
Distributed Systems

15-440 / 15-640

13 – Errors, Fault Tolerance
and RAID

Tuesday, Oct 9th, 2018

Fault Tolerance Techniques So Far?

• Redundancy: information / time / physical redundancy
• E.g., used in airplanes

• Recovery: checkpointing and logging (ARIES)
• E.g., used in commercial databases

• Distributed Replication: Paxos
• E.g., Survive the failure of up to 𝑓 replicas

• How about data errors in communication and storage?
→Main topic for this lecture

2

Outline
• Errors/error recovery

• Using multiple disks

• Why have multiple disks?

• problem and approaches

• RAID levels and performance

• Estimating availability

3

Type of Errors
• Hard errors: The component is dead.

• Soft errors: A signal or bit is wrong, but it doesn’t
mean the component must be faulty

• Note: You can have recurring soft errors due to faulty,
but not dead, hardware

4

Examples
• DRAM errors

• Hard errors: Often caused by motherboard -

faulty traces, bad solder, etc.

• Soft errors: Often caused by cosmic radiation

or alpha particles (from the chip material

itself) hitting memory cell, changing value.

(Remember that DRAM is just little capacitors

to store charge... if you hit it with radiation,

you can add charge to it.)

5
Image from

https://www.sparkfun.com/tutorials/96

Some fun #s
• Both Microsoft and Google have recently started to

identify DRAM errors as an increasing contributor to
failures... Google in their datacenters, Microsoft on
your desktops.

• We’ve known hard drives fail

• Especially when students need to hand in HW/projects :)

E.g., See “DRAM Errors in the Wild: A Large-Scale Field
Study”

6

Replacement Rates
HPC1 COM1 COM2

Component % Component % Component %

Hard drive 30.6 Power supply 34.8 Hard drive 49.1

Memory 28.5 Memory 20.1 Motherboard 23.4

Misc/Unk 14.4 Hard drive 18.1 Power supply 10.1

CPU 12.4 Case 11.4 RAID card 4.1

motherboard 4.9 Fan 8 Memory 3.4

Controller 2.9 CPU 2 SCSI cable 2.2

QSW 1.7 SCSI Board 0.6 Fan 2.2

Power supply 1.6 NIC Card 1.2 CPU 2.2

MLB 1 LV Pwr Board 0.6 CD-ROM 0.6

SCSI BP 0.3 CPU heatsink 0.6 Raid Controller 0.6

From “Disk failures in the real world: What does an

MTTF of 1,000,000 hours mean to you?”

7

Measuring Availability

• Fraction of time that server is able to handle requests

• Computed from MTTF and MTTR (Mean Time To Repair)

8

Installed

TTF1

Fixed

TTR1

Fixed

TTF2 TTR2

Fixed

TTF3 TTR3

Available during these 3 periods of time

Availability
MTTF

MTTF MTTR

Measuring Availability
• Mean time to failure (MTTF) - “uptime”

• Mean time to repair (MTTR)

• Mean time between failures (MTBF)

• MTBF = MTTF + MTTR

• Availability = MTTF / (MTTF + MTTR)
• Suppose OS crashes once per month,

takes 10min to reboot.

• MTTF ≈ 24 hours X 30 = 720 hours = 43,200 minutes
MTTR = 10 minutes

• Availability = 43200 / 43210 = 0.997 (~“3 nines”)

9

Availability

Availability %
Downtime per

year

Downtime per

month*

Downtime per

week

90% ("one nine") 36.5 days 72 hours 16.8 hours

95% 18.25 days 36 hours 8.4 hours

97% 10.96 days 21.6 hours 5.04 hours

98% 7.30 days 14.4 hours 3.36 hours

99% ("two nines") 3.65 days 7.20 hours 1.68 hours

99.50% 1.83 days 3.60 hours 50.4 minutes

99.80% 17.52 hours 86.23 minutes 20.16 minutes

99.9% ("three nines") 8.76 hours 43.8 minutes 10.1 minutes

99.95% 4.38 hours 21.56 minutes 5.04 minutes

99.99% ("four nines") 52.56 minutes 4.32 minutes 1.01 minutes

99.999% ("five nines") 5.26 minutes 25.9 seconds 6.05 seconds

99.9999% ("six nines") 31.5 seconds 2.59 seconds 0.605 seconds

99.99999% ("seven nines") 3.15 seconds 0.259 seconds 0.0605 seconds

10

Availability in practice
• Carrier airlines (2002 FAA fact book)

• 41 accidents, 6.7M departures

• 99.9993% availability

• 911 Phone service (1993 NRIC report)
• 29 minutes per line per year

• 99.994%

• Standard phone service (various sources)
• 53+ minutes per line per year

• 99.99+%

• End-to-end Internet Availability
• 95% - 99.6%

11

Real Devices

12

Real Devices – the small print

13

Real Devices – the small print

170 years….??!

14

Disk failure conditional probability
distribution - Bathtub curve

Expected operating lifetime

1 / (reported MTTF)

Infant
mortality

Burn
out

15

Coping with failures...
• A failure

• Let’s say one bit in your DRAM fails.

• Propagates
• Assume it flips a bit in a memory address the kernel is

writing to. That causes a big memory error elsewhere,
or a kernel panic.

• This program is running one of a dozen storage servers
for your distributed filesystem.

• A client can’t read from the DFS, so it hangs.

• A professor can’t check out a copy of your 15-440
assignment, so he gives you an F.

16

What are our options?

1. Silently return the wrong answer.

2. Detect failure.

3. Correct / mask the failure

17

Parity Checking

Single Bit Parity:
Detect single bit errors

18

Even parity bit
If odd # of 1 in D:

parity bit = 1
else:

parity bit = 0

101110 0

101110 _

6 data bits

1 bit to detect error

101110 0

0

Calculated parity bit: 1
Recorded parity bit: 0
Error detected!!

101110 0

10

Calculated parity bit: 1
Recorded parity bit: 1
No error detected!!

Block Error Detection

• EDC= Error Detection and Correction bits (redundancy)

• D = Data protected by error checking, may include header fields

• Error detection not 100% reliable!

• Protocol may miss some errors, but rarely

• Larger EDC field yields better detection and correction

19

Error Detection - Checksum

• Used by TCP, UDP, IP, etc..

• Ones complement sum of all words/shorts/bytes in
packet

• Simple to implement

• Relatively weak detection

• Easily tricked by typical error patterns – e.g. bit flips

20

Error Detection - Checksum

Sender

• Treat segment contents as
sequence of 16-bit integers

• Checksum: addition (1’s
complement sum) of
segment contents

• Sender puts checksum value
into checksum field in
header

Receiver

• Compute checksum of
received segment

• Check if computed checksum
equals checksum field value:

• NO - error detected

• YES - no error detected.
But maybe errors
nonethless?

• Goal: detect “errors” (e.g., flipped bits) in transmitted
segment

21

Error Detection – Cyclic Redundancy
Check (CRC)
• Better loss detection properties than checksums

• Cyclic codes have favorable properties in that they are

well suited for detecting burst errors

• Therefore, used on networks/hard drives

• Polynomial code

• Treat packet bits a coefficients of n-bit polynomial

• Choose r+1 bit generator polynomial (well known –

chosen in advance)

• Add r bits to packet such that message is divisible by

generator polynomial

22

Error Detection – CRC
• View data bits, D, as a binary number

• Choose r+1 bit pattern (generator), G

• Goal: choose r CRC bits, R, such that

• <D,R> exactly divisible by G (modulo 2)

• Receiver knows G, divides <D,R> by G. If non-zero remainder: error

detected!

• Can detect all burst errors less than r+1 bits

• Widely used in practice: Ethernet, disks

23

CRC Example

Want:

D.2r XOR R = nG

equivalently:

D.2r = nG XOR R

equivalently:

if we divide D.2r by G,
want reminder R

24

R = remainder[]
D.2r

G
101110011 divisible by 1001

<D,R> G

What are our options?
1. Silently return the wrong answer.

2. Detect failure.

3. Correct / mask the failure

25

Error Recovery

• Two forms of error recovery
• Redundancy

• Error Correcting Codes (ECC)

• Replication/Voting

• Retry

• ECC
• Keep encoded redundant data to help repair losses

• Forward Error Correction (FEC) – send bits in advance
• Reduces latency of recovery at the cost of bandwidth

26

Error Recovery – Error
Correcting Codes (ECC)

27

Two Dimensional Bit Parity:
Detect and correct single bit errors

0 0

10101
11110
01110

00101

1
0
1

0

No errors

10101
10110
01110

00101

1
0
1

0

Single bit error

10101
10110
01110

01101

1
1
1

0

Computed parity bits

Replication/Voting
• If you take this to the extreme

[r1] [r2] [r3]

• Send requests to all three versions of the software: Triple
modular redundancy

•Compare the answers, take the majority
•Assumes no error detection

• In practice - used mostly in space applications; some
extreme high availability apps (stocks & banking? maybe.
But usually there are cheaper alternatives if you don’t need
real-time)

•Stuff we cover later: surviving malicious failures through voting
(byzantine fault tolerance)

28

28

Retry – Network Example

29

Time

T
im

e
o

u
t

• Sometimes errors

are transient

• Need to have error

detection

mechanism

• E.g., timeout,

parity, chksum

• No need for

majority vote

Client Server

One key question
• How correlated are failures?

• Can you assume independence?

• If the failure probability of a computer in a rack is p,

• What is p(computer 2 failing) | computer 1 failed?

• Maybe it’s p... or maybe they’re both plugged into the same
UPS...

• Why is this important?

• Correlation reduces value of redundancy

30

Fault Tolerant Design
• Quantify probability of failure of each component

• Quantify the costs of the failure

• Quantify the costs of implementing fault tolerance

• This is all probabilities...

31

Outline
• Errors/error recovery

• RAID levels and performance

• Estimating availability

32

Back to Disks…

• Real HDDs
• A sequence of sectors (blocks)

• Normally 512 B or 4KB

33

sector

*Image source: Storage subsystem performance: analysis and recipes http://gudok.xyz/sspar/

Back to Disks…
What are our options?
1. Silently return the wrong answer.

2. Detect Failure

• Put CRC in header/trailer of each physical block

• If CRC mismatches, return error

3. Correct / Mask Failure
• Re-read if the firmware signals error (may help if transient

error, may not)

• Use an error correcting code (what kinds of errors do
they help with?)

• Can handle bit flips? Damaged blocks?

34

Back to Disks…

• Correcting/Masking Ex: Real HDDs
• Every sector has an ECC after data section. Every read fetches

both, computes the ECC on the data, and compares it to the
version in the section. If mismatch, returns recoverable soft
error.

35

*Image source: Storage subsystem performance: analysis and recipes http://gudok.xyz/sspar/

Back to Disks…
What are our options?
1. Silently return the wrong answer.

2. Detect Failure

• Put CRC in header/trailer of each physical block

• If CRC mismatches, return error

3. Correct / Mask Failure
• Re-read if the firmware signals error (may help if transient

error, may not)

• Use an error correcting code (what kinds of errors do
they help with?)

• Can handle bit flips? Damaged blocks?

• Have the data stored in multiple places (RAID)

36

RAID Taxonomy
• Redundant Array of Inexpensive Independent Disks

• Constructed by UC-Berkeley researchers in late 80s
• Exposed to users as a single logical disk
• Actually an array of multiple physical disks

• Standard Levels
• RAID 0 – Coarse-grained Striping with no redundancy
• RAID 1 – Mirroring of independent disks
• RAID 2 – Fine-grained data striping plus Hamming code disks
• RAID 3 – Fine-grained data striping plus parity disk
• RAID 4 – Coarse-grained data striping plus parity disk
• RAID 5 – Coarse-grained data striping plus striped parity
• RAID 6 – Extends RAID 5 by adding another parity block

37

RAID
• Definitions

• Reliability : # of disk failures we can tolerate

• Latency : Time to process Read/Write in RAID

• Will only consider Random R/W in this class

• We are reading any block from disks (does not have to be

sequential)

38

RAID Level Capacity Reliability
Write

Throughput
Write

Latency
Read

Throughput
Read

Latency

Single Disk

RAID-0

RAID-1

RAID-4

RAID-5

Let's get started!

Single Disk

39

B
...
4
3
2
1

B: # of blocks

Single Disk B 0

Level Capacity Reliability
Write

Throughput
Read

Throughput
Write

Latency
Read

Latency

B: # of blocks per disk
R: R/W throughput of a disk
N: # of disks D: time to R/W block

Single Disk

40

B
...
4
3
2
1

B: # of blocks

R: R/W Throughput

Single Disk B 0

1

R RD D

Level Capacity Reliability
Write

Throughput
Write

Latency
Read

Throughput
Read

Latency

B: # of blocks per disk
R: R/W throughput of a disk
N: # of disks D: time to R/W block

Use multiple disks?
• Capacity

• More disks allows us to store more data

• Performance
• Access multiple disks in parallel

• Each disk can be working on independent read or write

• Overlap seek and rotational positioning time for all

• Reliability
• Recover from disk (or single sector) failures

• Will need to store multiple copies of data to recover

41

RAID-0: Striping
• To optimize Performance

• Interleave data across multiple disks

• Large file streaming can enjoy parallel transfers

• Small requests benefit from load balancing

• If blocks of hot files equally likely on all disks (really?)

42

1 2 3 4File:

1 2 3 4

D1 D2 D3
D4

RAID-0: Striping

43

1 2 3 4File:

5
1

6
2

7
3

8
4

RAID-0 𝑁 ∙ 𝐵 0

5 6 7 8

Level Capacity Reliability
Write

Throughput
Write

Latency
Read

Throughput
Read

Latency

D1 D2 D3
D4

44

File:

RAID-0 𝑁 ∙ 𝐵 0 𝑁 ∙ 𝑅 𝑁 ∙ 𝑅𝐷

1 2 3 4File:

5
1

6
2

7
3

8
4

5 6 7 8

𝐷

RAID-0: Striping
B: # of blocks per disk
R: R/W throughput of a disk
N: # of disks D: time to R/W block

Level Capacity Reliability
Write

Throughput
Write

Latency
Read

Throughput
Read

Latency

D1 D2 D3
D4

Now, What If A Disk Fails?
• In a striped system

• a part of each file system lost

• Periodic Backups?

• backing up takes time and effort

• backup doesn’t help recover data lost during that day

• Any data loss is a big deal to a bank or stock exchange

45

RAID-1: Mirroring
• To achieve better reliability

• Two (or more) copies

• mirroring, shadowing, duplexing, etc.

• Write both, read either

46

File:

3
1

3
1

4
2

4
2

1 2 3 4

D1 D2 D3
D4

RAID-1: Mirroring

47

1 2 3 4File:

3
1

3
1

4
2

4
2

RAID-1
𝑁

2
∙ 𝐵 1

5 6 7 8

𝑁/2
(if lucky)

B: # of blocks per disk
R: R/W throughput of a disk
N: # of disks D: time to R/W block

Level Capacity Reliability
Write

Throughput
Write

Latency
Read

Throughput
Read

Latency

D1 D2 D3
D4

RAID-1: Mirroring

48

1 2 3 4File:

3
1

3
1

4
2

4
2

RAID-1
𝑁

2
∙ 𝐵 1

5 6 7 8

𝑁/2
(if lucky)

𝑁

2
∙ 𝑅 𝑁 ∙ 𝑅𝐷 𝐷

B: # of blocks per disk
R: R/W throughput of a disk
N: # of disks D: time to R/W block

Level Capacity Reliability
Write

Throughput
Write

Latency
Read

Throughput
Read

Latency

D1 D2 D3
D4

RAID: So-far

49

Level Scheme Capacity Reliability
Read

Throughput
Write

Throughput

Single Disk 𝐵 0 𝑅 𝑅

RAID-0 𝑁 ∙ 𝐵 0 𝑁 ∙ 𝑅 𝑁 ∙ 𝑅

RAID-1
𝑁

2
∙ 𝐵

1
(for sure)
𝑁

2
(if lucky)

𝑁 ∙ 𝑅
𝑁

2
∙ 𝑅

RAID-4

RAID-5

• Is Mirroring the best approach for reliability?

• Parity: RAID-4/5

Mirroring

Striping

* Latency Omitted

RAID-4: Parity Disk

• Disk failures are self-identifying (a.k.a. erasures)
• Don’t have to find the error

• Erasure code: ECCs under the assumption of bit erasures

• XOR is one common example

• N-Error detecting code is also N-Erasure
Correcting

• Error-detecting codes can’t find an error, just know its there

• But if you independently know where error is, allows repair

50

1 2 3⨁ ⨁ P≠

12 3⨁ P =⨁

RAID-4: Parity Disk
• Capacity: one extra disk needed per stripe

51

File:

4
1

5
2

6
3

P456

P123

1 2 3 4 5 6

=
=

⨁ ⨁
⨁ ⨁

31 2 P123⨁ ⨁ =
2

D1 D2 D3
D4

RAID-4: Parity Disk

52

File:

4
1

5
2

6
3

P456

P123

1 2 3 4 5 6

RAID-4 (𝑁 − 1)𝐵 1

Level Capacity Reliability
Write

Throughput
Read

Throughput
Write

Latency
Read

Latency

B: # of blocks per disk
R: R/W throughput of a disk
N: # of disks D: time to R/W block

D1 D2 D3
D4

RAID-4: Parity Disk

53

File:

4
1

5
2

6
3

P456

P123

1’ 2 3 4 5 6

RAID-4 (𝑁 − 1)𝐵 1

To-Write

1 P1 1’⨁ ⨁ = P’

𝑅

2
2𝐷

1’ P’123
Busy R/W

for 2D

B: # of blocks per disk
R: R/W throughput of a disk
N: # of disks D: time to R/W block

Level Capacity Reliability
Write

Throughput
Write

Latency
Read

Throughput
Read

Latency

D1 D2 D3
D4

RAID-4: Parity Disk

54

File:

4
1

5
2

6
3

P456

P123

1 2 3 4 5 6

RAID-4 (𝑁 − 1)𝐵 1 𝑁 − 1 𝑅𝑅

2
2𝐷 𝐷

B: # of blocks per disk
R: R/W throughput of a disk
N: # of disks D: time to R/W block

Level Capacity Reliability
Write

Throughput
Write

Latency
Read

Throughput
Read

Latency

D1 D2 D3
D4

The parity disk bottleneck
• Reads go only to the data disks

• But, hopefully load balanced across the disks

• All writes go to the parity disk

• And, worse, usually result in Read-Modify-Write

sequence

• So, parity disk can easily be a bottleneck

• Parity disk can wear out very fast!

• Adding disk does not provide any performance gain

55

RAID-5: Rotating Parity
• To distribute parity writes, place parity in round-

robin manner

56

File:

4
1

5
2

P456

1 2 3 4 5 6

3
6

P123

D1 D2 D3
D4

RAID-5: Rotating Parity

57

File:

4
1

5
2

P456

1 2 3 4 5 6

3
6

P123

RAID-5 (𝑁 − 1)𝐵 1

B: # of blocks per disk
R: R/W throughput of a disk
N: # of disks
D: time to R/W block

Level Capacity Reliability
Write

Throughput
Write

Latency
Read

Throughput
Read

Latency

D1 D2 D3
D4

RAID-5: Rotating Parity

58

File: 1 2’ 3 4’ 5 6

To-Write

RAID-5 (𝑁 − 1)𝐵 1 𝑁

4
∙ 𝑅 2𝐷

4
1

5
2

P456

3
6

P123

B: # of blocks per disk
R: R/W throughput of a disk
N: # of disks
D: time to R/W block

Level Capacity Reliability
Write

Throughput
Write

Latency
Read

Throughput
Read

Latency

D1 D2 D3
D4

RAID-5: Rotating Parity

59

File: 1 2 3 4 5 6

RAID-5 (𝑁 − 1)𝐵 1 𝑁

4
∙ 𝑅 2𝐷

4
1

5
2

P456

3
6

P123

𝑁 ∙ 𝑅 𝐷

B: # of blocks per disk
R: R/W throughput of a disk
N: # of disks
D: time to R/W block

Level Capacity Reliability
Write

Throughput
Write

Latency
Read

Throughput
Read

Latency

D1 D2 D3
D4

Recap: RAID

60

Level Scheme Capacity Reliability
Read

Throughput
Write

Throughput

Single Disk 𝐵 0 𝑅 𝑅

RAID-0 𝑁 ∙ 𝐵 0 𝑁 ∙ 𝑅 𝑁 ∙ 𝑅

RAID-1
𝑁

2
∙ 𝐵

1
(for sure)
𝑁

2
(if lucky)

𝑁 ∙ 𝑅
𝑁

2
∙ 𝑅

RAID-4 (𝑁 − 1)𝐵 1 (𝑁 − 1)𝑅
𝑅

2

RAID-5 (𝑁 − 1)𝐵 1 𝑁 ∙ 𝑅
𝑁

4
∙ 𝑅

We only considered Random Read/Write Throughput.

For Sequential Read/Write (reading 1, 2, 3, … order),

refer to the reading material

Mirroring

Striping

Parity

Disk

Rotating

Parity

* Latency Omitted

Outline
• Errors/error recovery

• RAID levels and performance

• Estimating availability

61

Availability / Reliability

• We will try to calculate availability/reliability using
example of disks & RAID

• Why matters?

• All major companies have reliability team

• Ex. Google (https://landing.google.com/sre/)

• If you are interested, there is a career path for reliability

engineer!

62

https://landing.google.com/sre/)

Availability / Reliability Metrics

63

Availability / Reliability Metrics

• Using Disk/RAID…

• We want to calculate MTTDL

• Mean Time To First Data Loss (MTTDL)

• Given that we know the MTTF

• Under simplifying assumptions

64

Estimating Availability / Reliability

• Back to Disks….

• Back-of-the-envelope calculation

• Assuming failures across devices are independent

• Assuming failures over time are independent

• Assuming failure rate from stable failure period

65

1 / (reported
MTTF)

Recap: MTTF, MTTR
• MTTF: Mean Time to Failure

• Inverse of prob of failure

• MTTR: Mean Time to Repair

66

Installed

TTF1

Fixed

TTR1

Fixed

TTF2 TTR2

Fixed

TTF3 TTR3

How often are failures
• MTTF of a disk(Mean Time to Failure)

• MTTFdisk ~ 1,200,000 hours (~136 years, <1% per year)

• Recap: MTTF is inverse of failure rate

• With 2 disks,

• Twice more likely to fail

• Mean time to first disk failure ~ MTTFdisk / 2

• So, we approximate

• With n disks, n times more likely to fail, and

• Mean time to first disk failure ~ MTTFdisk / (# of disks)

67

Reliability without Rebuild
• If disk fails, just leave it failed

• We do not try to rebuild it

• Let’s say we want to keep data whose size equals to the capacity
of 200 drives

• MTTDLRAID-0 = mean time to first disk failure

• Can tolerate only 0 disk failure

• Ex. For a striped array of 200 drives

• MTTDLRAID-0 = 136 years / 200 drives = 0.65 years

68

1 2 3 200

D1 D2 D3
D200

Reliability without Rebuild
• To keep data whose size equals to the capacity of 200 drives

• Add 200 more disks to build RAID-1 (Mirroring)

• total 400 disk needed

• MTTDLRAID-1

• MTTDLpair = (MTTFdrive / 2) + MTTFdrive = 1.5 * MTTFdrive

• MTTDLRAID-1 = MTTDLpair / (# of pairs)

• RAID-1 fails if at least one pair fail

69

Mean time to first disk failure

Mean time to second disk failure

Reliability without Rebuild
• Add 200 more disks to build RAID-1 (Mirroring)

• total 400 disk needed

• MTTDLpair = (MTTFdrive / 2) + MTTFdrive = 1.5 * MTTFdrive

• MTTDLRAID-1 = MTTDLpair / (# of pairs)

• For a RAID-1 of 400 drives (200 mirrored pairs)

• MTTDLRAID-1 = 1.5 * 136 years / 200 pairs = 1.02 years

70

i+200
i

i+200
i

Di Di+1

× 200

Reliability without Rebuild
• To keep data whose size equals to the capacity of 200 drives

• Add only 50 more disks to build RAID-4

• total 250 disks

• 1 parity disk per 4 data disk

• MTTDLRAID-4

• 1 Set : 4 data disk + 1 parity disk

• MTTDLset = MTTFdrive / 5 + MTTFdrive / 4

• MTTDLRAID-4 = MTTFset / (# of sets)

71

Mean time to first disk failure

Mean time to second disk failure

5
1

6
2

7
3

P5678

P1234

8
4

1 SET

Reliability without Rebuild
• To keep data whose size equals to the capacity of 200 drives

• Add only 50 more disks to build RAID-4

• total 250 disks

• 1 parity disk per 4 data disk

• MTTDLRAID-4

• MTTDLset = (MTTFdrive / 5) + MTTFdrive / 4 = 0.45 * MTTFdrive

• MTTDLRAID-4 = MTTDLset / (# of sets)

• For a RAID-4 of 250 drives (50 sets)

• MTTDLRAID-4 = 0.45* 136 years / 50 sets = 1.22 years

72

Reliability without Rebuild
• Comparisons

• To keep data whose size is equal to capacity of 200 drives

• MTTF: the longer the better!

• RAID 0: Striping

• With total 200 drives, MTTDL = 0.65 years

• RAID 1: Mirroring

• With total 400 drives, MTTDL = 1.02 years

• RAID 4: Parity Disk

• With total 250 drives, MTTDL = 1.22 years

73

Rebuild: restoring redundancy after
failure (extra)
• After a drive failure

• data is still available for access

• but, a second failure is BAD

• So, should reconstruct the data onto a new drive
• online spares are common features of high-end disk arrays

• reduce time to start rebuild

• must balance rebuild rate with foreground performance impact
• a performance vs. reliability trade-offs

• How data is reconstructed
• Mirroring: just read good copy

• Parity: read all remaining drives (including parity) and compute

74

Reliability consequences of adding
rebuild (extra)
• No data loss, if fast enough

• That is, if first failure fixed before second one happens

• Now MTTR is considered

• New math is...

• MTTDLarray = 1/ prob of 1st failure *
1/ prob of 2nd failure before repair)

... where prob of 2nd failure before repair is
MTTRdrive / MTTFseconddrive

75

1/ prob of 1st failure = Mean time to first disk failure

Reliability consequences of adding
rebuild (extra)
• For mirroring

• MTTDLpair = (MTTFdrive / 2) * (MTTFdrive / MTTRdrive)

• MTTDLRAID-1 = MTTDLpair / (# of pairs)

• For 5-disk parity-protected arrays
• MTTDLset = (MTTFdrive / 5) * ((MTTFdrive / 4)/ MTTRdrive)

• MTTDLRAID-4 = MTTDLset / (# of sets)

76

Mean time to first disk failure

Inverse of prob. of second disk failure before repair

Mean time to first disk failure

Inverse of prob. of second disk failure before repair

Three modes of operation
• Normal mode

• everything working; maximum efficiency

• Degraded mode

• some disk unavailable

• must use degraded mode operations

• Rebuild mode

• reconstructing lost disk’s contents onto spare

• degraded mode operations plus competition with

rebuild

77

Mechanics of rebuild
• Background process

• use degraded mode read to reconstruct data

• then, write it to replacement disk

• Implementation issues
• Interference with foreground activity and controlling

rate
• Rebuild is important for reliability

• Foreground activity is important for performance

• Using the rebuilt disk
• For rebuilt part, reads can use replacement disk

• Must balance performance benefit with rebuild interference

78

Summary
• Definition of MTTF/MTBF/MTTR: Understanding

availability in systems.

• Failure detection and fault masking techniques

• Engineering tradeoff: Cost of failures vs. cost of
failure masking.

• At what level of system to mask failures?

• Leading into replication as a general strategy for fault
tolerance

• Thought to leave you with:
• What if you have to survive the failure of entire

computers? Of a rack? Of a datacenter?

79

79

Summary
• RAID turns multiple disks into a larger, faster, more

reliable disk

• RAID-0: Striping
Good when performance and capacity really matter,
but reliability doesn’t

• RAID-1: Mirroring
Good when reliability and write performance matter,
but capacity (cost) doesn’t

• RAID-5: Rotating Parity
Good when capacity and cost matter or workload is
read-mostly

• Good compromise choice

80

81

