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Fault Tolerance Techniques So Far?

• Redundancy: information / time / physical redundancy
• E.g., used in airplanes

• Recovery: checkpointing and logging (ARIES)
• E.g., used in commercial databases

• Distributed Replication: Paxos
• E.g., Survive the failure of up to 𝑓 replicas

• How about data errors in communication and storage?
→Main topic for this lecture
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Outline
• Errors/error recovery

• Using multiple disks

• Why have multiple disks?

• problem and approaches 

• RAID levels and performance

• Estimating availability
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Type of Errors
• Hard errors:  The component is dead.

• Soft errors: A signal or bit is wrong, but it doesn’t 
mean the component must be faulty

• Note:  You can have recurring soft errors due to faulty, 
but not dead, hardware
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Examples
• DRAM errors

• Hard errors:  Often caused by motherboard -

faulty traces, bad solder, etc.

• Soft errors:  Often caused by cosmic radiation 

or alpha particles (from the chip material 

itself) hitting memory cell, changing value.  

(Remember that DRAM is just little capacitors 

to store charge... if you hit it with radiation, 

you can add charge to it.)
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Some fun #s
• Both Microsoft and Google have recently started to 

identify DRAM errors as an increasing contributor to 
failures... Google in their datacenters, Microsoft on 
your desktops.

• We’ve known hard drives fail 

• Especially when students need to hand in HW/projects :)

E.g., See “DRAM Errors in the Wild: A Large-Scale Field 
Study”
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Replacement Rates
HPC1 COM1 COM2

Component % Component % Component %

Hard drive 30.6 Power supply 34.8 Hard drive 49.1

Memory 28.5 Memory 20.1 Motherboard 23.4

Misc/Unk 14.4 Hard drive 18.1 Power supply 10.1

CPU 12.4 Case 11.4 RAID card 4.1

motherboard 4.9 Fan 8 Memory 3.4

Controller 2.9 CPU 2 SCSI cable 2.2

QSW 1.7 SCSI Board 0.6 Fan 2.2

Power supply 1.6 NIC Card 1.2 CPU 2.2

MLB 1 LV Pwr Board 0.6 CD-ROM 0.6

SCSI BP 0.3 CPU heatsink 0.6 Raid Controller 0.6

From “Disk failures in the real world: What does an 

MTTF of 1,000,000 hours mean to you?”
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Measuring Availability

• Fraction of time that server is able to handle requests

• Computed from MTTF and MTTR (Mean Time To Repair) 
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Measuring Availability
• Mean time to failure (MTTF) - “uptime”

• Mean time to repair (MTTR)

• Mean time between failures (MTBF)

• MTBF = MTTF + MTTR

• Availability = MTTF / (MTTF + MTTR)
• Suppose OS crashes once per month,

takes 10min to reboot.  

• MTTF ≈ 24 hours X 30 = 720 hours = 43,200 minutes
MTTR = 10 minutes

• Availability = 43200 / 43210 = 0.997 (~“3 nines”)
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Availability

Availability %
Downtime per 

year

Downtime per 

month*

Downtime per 

week

90% ("one nine") 36.5 days 72 hours 16.8 hours

95% 18.25 days 36 hours 8.4 hours

97% 10.96 days 21.6 hours 5.04 hours

98% 7.30 days 14.4 hours 3.36 hours

99% ("two nines") 3.65 days 7.20 hours 1.68 hours

99.50% 1.83 days 3.60 hours 50.4 minutes

99.80% 17.52 hours 86.23 minutes 20.16 minutes

99.9% ("three nines") 8.76 hours 43.8 minutes 10.1 minutes

99.95% 4.38 hours 21.56 minutes 5.04 minutes

99.99% ("four nines") 52.56 minutes 4.32 minutes 1.01 minutes

99.999% ("five nines") 5.26 minutes 25.9 seconds 6.05 seconds

99.9999% ("six nines") 31.5 seconds 2.59 seconds 0.605 seconds

99.99999% ("seven nines") 3.15 seconds 0.259 seconds 0.0605 seconds
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Availability in practice
• Carrier airlines (2002 FAA fact book)

• 41 accidents, 6.7M departures

• 99.9993% availability

• 911 Phone service (1993 NRIC report)
• 29 minutes per line per year

• 99.994%

• Standard phone service (various sources)
• 53+ minutes per line per year

• 99.99+%

• End-to-end Internet Availability
• 95% - 99.6%

11



Real Devices
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Real Devices – the small print
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Real Devices – the small print

170 years….??!

14



Disk failure conditional probability 
distribution - Bathtub curve

Expected operating lifetime

1 / (reported MTTF)

Infant
mortality

Burn 
out
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Coping with failures...
• A failure

• Let’s say one bit in your DRAM fails.

• Propagates
• Assume it flips a bit in a memory address the kernel is 

writing to.  That causes a big memory error elsewhere, 
or a kernel panic.

• This program is running one of a dozen storage servers 
for your distributed filesystem.

• A client can’t read from the DFS, so it hangs.

• A professor can’t check out a copy of your 15-440 
assignment, so he gives you an F.
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What are our options?

1. Silently return the wrong answer.

2. Detect failure.

3. Correct / mask the failure
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Parity Checking

Single Bit Parity:
Detect single bit errors
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Even parity bit
If odd # of 1 in D:

parity bit = 1
else:

parity bit = 0

101110 0

101110 _

6 data bits

1 bit to detect error

101110 0

0

Calculated parity bit: 1
Recorded parity bit: 0
Error detected!!

101110 0

10

Calculated parity bit: 1
Recorded parity bit: 1
No error detected!!



Block Error Detection

• EDC= Error Detection and Correction bits (redundancy)

• D    = Data protected by error checking, may include header fields 

• Error detection not 100% reliable!

• Protocol may miss some errors, but rarely

• Larger EDC field yields better detection and correction
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Error Detection - Checksum

• Used by TCP, UDP, IP, etc..

• Ones complement sum of all words/shorts/bytes in 
packet

• Simple to implement

• Relatively weak detection

• Easily tricked by typical error patterns – e.g. bit flips
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Error Detection - Checksum

Sender

• Treat segment contents as 
sequence of 16-bit integers

• Checksum: addition (1’s 
complement sum) of 
segment contents

• Sender puts checksum value 
into checksum field in 
header

Receiver

• Compute checksum of 
received segment

• Check if computed checksum 
equals checksum field value:

• NO - error detected

• YES - no error detected. 
But maybe errors 
nonethless?

• Goal: detect “errors” (e.g., flipped bits) in transmitted 
segment
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Error Detection – Cyclic Redundancy 
Check  (CRC)
• Better loss detection properties than checksums

• Cyclic codes have favorable properties in that they are 

well suited for detecting burst errors

• Therefore, used on networks/hard drives

• Polynomial code

• Treat packet bits a coefficients of n-bit polynomial

• Choose r+1 bit generator polynomial (well known –

chosen in advance)

• Add r bits to packet such that message is divisible by 

generator polynomial
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Error Detection – CRC
• View data bits, D, as a binary number

• Choose r+1 bit pattern (generator), G

• Goal: choose r CRC bits, R, such that

• <D,R> exactly divisible by G (modulo 2) 

• Receiver knows G, divides <D,R> by G.  If non-zero remainder: error 

detected!

• Can detect all burst errors less than r+1 bits

• Widely used in practice: Ethernet, disks
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CRC Example

Want:

D.2r XOR R = nG

equivalently:

D.2r = nG XOR R 

equivalently:

if we divide D.2r by G, 
want reminder R
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R = remainder[           ]
D.2r

G
101110011 divisible by 1001

<D,R> G



What are our options?
1. Silently return the wrong answer.

2. Detect failure.

3. Correct / mask the failure
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Error Recovery

• Two forms of error recovery
• Redundancy

• Error Correcting Codes (ECC)

• Replication/Voting

• Retry

• ECC
• Keep encoded redundant data to help repair losses

• Forward Error Correction (FEC) – send bits in advance
• Reduces latency of recovery at the cost of bandwidth
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Error Recovery – Error 
Correcting Codes (ECC)
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Two Dimensional Bit Parity:
Detect and correct single bit errors
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Replication/Voting
• If you take this to the extreme

[r1]  [r2]  [r3]

• Send requests to all three versions of the software:  Triple 
modular redundancy

•Compare the answers, take the majority
•Assumes no error detection

• In practice - used mostly in space applications;  some 
extreme high availability apps (stocks & banking?  maybe.  
But usually there are cheaper alternatives if you don’t need 
real-time)

•Stuff we cover later:  surviving malicious failures through voting 
(byzantine fault tolerance)
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Retry – Network Example
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• Sometimes errors 

are transient

• Need to have error 

detection 

mechanism

• E.g., timeout, 

parity, chksum

• No need for 

majority vote

Client Server



One key question
• How correlated are failures?

• Can you assume independence?

• If the failure probability of a computer in a rack is p,

• What is p(computer 2 failing) | computer 1 failed?

• Maybe it’s p... or maybe they’re both plugged into the same 
UPS...

• Why is this important?

• Correlation reduces value of redundancy
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Fault Tolerant Design
• Quantify probability of failure of each component

• Quantify the costs of the failure

• Quantify the costs of implementing fault tolerance

• This is all probabilities...
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Outline
• Errors/error recovery

• RAID levels and performance

• Estimating availability
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Back to Disks…

• Real HDDs
• A sequence of sectors (blocks)

• Normally 512 B or 4KB
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sector

*Image source: Storage subsystem performance: analysis and recipes http://gudok.xyz/sspar/



Back to Disks…
What are our options?
1. Silently return the wrong answer.

2. Detect Failure

• Put CRC in header/trailer of each physical block

• If CRC mismatches, return error

3. Correct / Mask Failure
• Re-read if the firmware signals error (may help if transient 

error, may not)

• Use an error correcting code (what kinds of errors do 
they help with?)

• Can handle bit flips? Damaged blocks?
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Back to Disks…

• Correcting/Masking Ex: Real HDDs
• Every sector has an ECC after data section. Every read fetches 

both, computes the ECC on the data, and compares it to the 
version in the section. If mismatch, returns recoverable soft 
error.
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*Image source: Storage subsystem performance: analysis and recipes http://gudok.xyz/sspar/



Back to Disks…
What are our options?
1. Silently return the wrong answer.

2. Detect Failure

• Put CRC in header/trailer of each physical block

• If CRC mismatches, return error

3. Correct / Mask Failure
• Re-read if the firmware signals error (may help if transient 

error, may not)

• Use an error correcting code (what kinds of errors do 
they help with?)

• Can handle bit flips? Damaged blocks?

• Have the data stored in multiple places (RAID)

36



RAID Taxonomy 
• Redundant Array of Inexpensive Independent Disks

• Constructed by UC-Berkeley researchers in late 80s
• Exposed to users as a single logical disk
• Actually an array of multiple physical disks

• Standard Levels
• RAID 0 – Coarse-grained Striping with no redundancy
• RAID 1 – Mirroring of independent disks
• RAID 2 – Fine-grained data striping plus Hamming code disks
• RAID 3 – Fine-grained data striping plus parity disk
• RAID 4 – Coarse-grained data striping plus parity disk
• RAID 5 – Coarse-grained data striping plus striped parity
• RAID 6 – Extends RAID 5 by adding another parity block
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RAID
• Definitions

• Reliability : # of disk failures we can tolerate

• Latency : Time to process Read/Write in RAID

• Will only consider Random R/W in this class

• We are reading any block from disks (does not have to be 

sequential)

38

RAID Level Capacity Reliability
Write 

Throughput
Write

Latency
Read

Throughput
Read

Latency

Single Disk

RAID-0

RAID-1

RAID-4

RAID-5

Let's get started!



Single Disk
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B
...
4
3
2
1

B: # of blocks

Single Disk B 0

Level Capacity Reliability
Write 

Throughput
Read 

Throughput
Write 

Latency
Read 

Latency

B: # of blocks per disk
R: R/W throughput of a disk
N: # of disks     D: time to R/W block



Single Disk
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R: R/W Throughput

Single Disk B 0

1

R RD D

Level Capacity Reliability
Write 

Throughput
Write 

Latency
Read 

Throughput
Read 
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R: R/W throughput of a disk
N: # of disks     D: time to R/W block



Use multiple disks?
• Capacity

• More disks allows us to store more data

• Performance
• Access multiple disks in parallel

• Each disk can be working on independent read or write

• Overlap seek and rotational positioning time for all

• Reliability
• Recover from disk (or single sector) failures

• Will need to store multiple copies of data to recover
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RAID-0: Striping 
• To optimize Performance

• Interleave data across multiple disks

• Large file streaming can enjoy parallel transfers 

• Small requests benefit from load balancing

• If blocks of hot files equally likely on all disks (really?) 
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RAID-0: Striping 
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1 2 3 4File:
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1

6
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8
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5 6 7 8

Level Capacity Reliability
Write 
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Write 
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File:

RAID-0 𝑁 ∙ 𝐵 0 𝑁 ∙ 𝑅 𝑁 ∙ 𝑅𝐷

1 2 3 4File:

5
1

6
2

7
3

8
4

5 6 7 8

𝐷

RAID-0: Striping 
B: # of blocks per disk
R: R/W throughput of a disk
N: # of disks     D: time to R/W block

Level Capacity Reliability
Write 

Throughput
Write 

Latency
Read 

Throughput
Read 

Latency

D1 D2 D3
D4



Now, What If A Disk Fails? 
• In a striped system

• a part of each file system lost

• Periodic Backups?

• backing up takes time and effort

• backup doesn’t help recover data lost during that day

• Any data loss is a big deal to a bank or stock exchange
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RAID-1: Mirroring
• To achieve better reliability

• Two (or more) copies

• mirroring, shadowing, duplexing, etc. 

• Write both, read either 
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RAID-1: Mirroring 
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1 2 3 4File:

3
1

3
1

4
2

4
2

RAID-1
𝑁

2
∙ 𝐵 1

5 6 7 8

𝑁/2
(if lucky)

B: # of blocks per disk
R: R/W throughput of a disk
N: # of disks     D: time to R/W block

Level Capacity Reliability
Write 

Throughput
Write 

Latency
Read 

Throughput
Read 

Latency

D1 D2 D3
D4



RAID-1: Mirroring 
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RAID: So-far
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Level Scheme Capacity Reliability
Read 

Throughput
Write 

Throughput

Single Disk 𝐵 0 𝑅 𝑅

RAID-0 𝑁 ∙ 𝐵 0 𝑁 ∙ 𝑅 𝑁 ∙ 𝑅

RAID-1
𝑁

2
∙ 𝐵

1
(for sure)
𝑁

2
(if lucky)

𝑁 ∙ 𝑅
𝑁

2
∙ 𝑅

RAID-4

RAID-5

• Is Mirroring the best approach for reliability?

• Parity: RAID-4/5

Mirroring

Striping

* Latency Omitted



RAID-4: Parity Disk

• Disk failures are self-identifying (a.k.a. erasures) 
• Don’t have to find the error

• Erasure code: ECCs under the assumption of bit erasures

• XOR is one common example

• N-Error detecting code is also N-Erasure 
Correcting

• Error-detecting codes can’t find an error, just know its there

• But if you independently know where error is, allows repair 
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RAID-4: Parity Disk
• Capacity: one extra disk needed per stripe
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RAID-4: Parity Disk
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RAID-4: Parity Disk
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RAID-4: Parity Disk
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The parity disk bottleneck 
• Reads go only to the data disks

• But, hopefully load balanced across the disks 

• All writes go to the parity disk 

• And, worse, usually result in Read-Modify-Write 

sequence 

• So, parity disk can easily be a bottleneck 

• Parity disk can wear out very fast!

• Adding disk does not provide any performance gain
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RAID-5: Rotating Parity
• To distribute parity writes, place parity in round-

robin manner
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RAID-5: Rotating Parity
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RAID-5: Rotating Parity
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RAID-5: Rotating Parity
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Recap: RAID
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Level Scheme Capacity Reliability
Read 

Throughput
Write 

Throughput

Single Disk 𝐵 0 𝑅 𝑅
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𝑅

2
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𝑁

4
∙ 𝑅

We only considered Random Read/Write Throughput.

For Sequential Read/Write (reading 1, 2, 3, … order), 

refer to the reading material

Mirroring

Striping

Parity

Disk

Rotating

Parity

* Latency Omitted



Outline
• Errors/error recovery

• RAID levels and performance

• Estimating availability

61



Availability / Reliability

• We will try to calculate availability/reliability using 
example of disks & RAID

• Why matters?

• All major companies have reliability team

• Ex. Google (https://landing.google.com/sre/)

• If you are interested, there is a career path for reliability 

engineer!
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Availability / Reliability Metrics
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Availability / Reliability Metrics

• Using Disk/RAID…

• We want to calculate MTTDL 

• Mean Time To First Data Loss (MTTDL)

• Given that we know the MTTF

• Under simplifying assumptions

64



Estimating Availability / Reliability

• Back to Disks….

• Back-of-the-envelope calculation

• Assuming failures across devices are independent

• Assuming failures over time are independent

• Assuming failure rate from stable failure period
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1 / (reported 
MTTF)



Recap: MTTF, MTTR
• MTTF: Mean Time to Failure

• Inverse of prob of failure

• MTTR: Mean Time to Repair
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How often are failures
• MTTF of a disk(Mean Time to Failure)

• MTTFdisk ~ 1,200,000 hours (~136 years, <1% per year)

• Recap: MTTF is inverse of failure rate

• With 2 disks,

• Twice more likely to fail

• Mean time to first disk failure ~ MTTFdisk / 2

• So, we approximate

• With n disks, n times more likely to fail, and

• Mean time to first disk failure ~ MTTFdisk / (# of disks)
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Reliability without Rebuild
• If disk fails, just leave it failed

• We do not try to rebuild it

• Let’s say we want to keep data whose size equals to the capacity 
of 200 drives

• MTTDLRAID-0 = mean time to first disk failure

• Can tolerate only 0 disk failure

• Ex. For a striped array of 200 drives

• MTTDLRAID-0 = 136 years / 200 drives = 0.65 years
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Reliability without Rebuild
• To keep data whose size equals to the capacity of 200 drives

• Add 200 more disks to build RAID-1 (Mirroring)

• total 400 disk needed

• MTTDLRAID-1 

• MTTDLpair = (MTTFdrive / 2) + MTTFdrive = 1.5 * MTTFdrive

• MTTDLRAID-1 = MTTDLpair / (# of pairs)

• RAID-1 fails if at least one pair fail
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Reliability without Rebuild
• Add 200 more disks to build RAID-1 (Mirroring)

• total 400 disk needed

• MTTDLpair = (MTTFdrive / 2) + MTTFdrive = 1.5 * MTTFdrive

• MTTDLRAID-1 = MTTDLpair / (# of pairs)

• For a RAID-1 of 400 drives (200 mirrored pairs)

• MTTDLRAID-1 = 1.5 * 136 years / 200 pairs = 1.02 years
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Reliability without Rebuild
• To keep data whose size equals to the capacity of 200 drives

• Add only 50 more disks to build RAID-4

• total 250 disks

• 1 parity disk per 4 data disk

• MTTDLRAID-4 

• 1 Set : 4 data disk + 1 parity disk

• MTTDLset = MTTFdrive / 5 + MTTFdrive / 4

• MTTDLRAID-4 = MTTFset / (# of sets)
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Reliability without Rebuild
• To keep data whose size equals to the capacity of 200 drives

• Add only 50 more disks to build RAID-4

• total 250 disks

• 1 parity disk per 4 data disk

• MTTDLRAID-4 

• MTTDLset = (MTTFdrive / 5) + MTTFdrive / 4 = 0.45 * MTTFdrive

• MTTDLRAID-4 = MTTDLset / (# of sets)

• For a RAID-4 of 250 drives (50 sets)

• MTTDLRAID-4 = 0.45* 136 years / 50 sets = 1.22 years

72



Reliability without Rebuild
• Comparisons

• To keep data whose size is equal to capacity of 200 drives

• MTTF: the longer the better!

• RAID 0: Striping

• With total 200 drives, MTTDL = 0.65 years

• RAID 1: Mirroring

• With total 400 drives, MTTDL = 1.02 years

• RAID 4: Parity Disk

• With total 250 drives, MTTDL =  1.22 years
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Rebuild: restoring redundancy after 
failure (extra)
• After a drive failure 

• data is still available for access 

• but, a second failure is BAD 

• So, should reconstruct the data onto a new drive 
• online spares are common features of high-end disk arrays 

• reduce time to start rebuild

• must balance rebuild rate with foreground performance impact 
• a performance vs. reliability trade-offs 

• How data is reconstructed 
• Mirroring: just read good copy 

• Parity: read all remaining drives (including parity) and compute 
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Reliability consequences of adding 
rebuild (extra)
• No data loss, if fast enough

• That is, if first failure fixed before second one happens 

• Now MTTR is considered

• New math is...

• MTTDLarray = 1/ prob of 1st failure *
1/ prob of 2nd failure before repair)

... where prob of 2nd failure before repair is
MTTRdrive / MTTFseconddrive
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Reliability consequences of adding 
rebuild (extra)
• For mirroring

• MTTDLpair = (MTTFdrive / 2) * (MTTFdrive / MTTRdrive)

• MTTDLRAID-1 = MTTDLpair / (# of pairs)

• For 5-disk parity-protected arrays
• MTTDLset = (MTTFdrive / 5) * ((MTTFdrive / 4 )/ MTTRdrive)

• MTTDLRAID-4 = MTTDLset / (# of sets)

76

Mean time to first disk failure

Inverse of prob. of second disk failure before repair

Mean time to first disk failure

Inverse of prob. of second disk failure before repair



Three modes of operation 
• Normal mode

• everything working; maximum efficiency 

• Degraded mode 

• some disk unavailable 

• must use degraded mode operations 

• Rebuild mode 

• reconstructing lost disk’s contents onto spare 

• degraded mode operations plus competition with 

rebuild 
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Mechanics of rebuild 
• Background process 

• use degraded mode read to reconstruct data 

• then, write it to replacement disk 

• Implementation issues 
• Interference with foreground activity and controlling 

rate 
• Rebuild is important for reliability

• Foreground activity is important for performance 

• Using the rebuilt disk
• For rebuilt part, reads can use replacement disk

• Must balance performance benefit with rebuild interference 
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Summary
• Definition of MTTF/MTBF/MTTR:  Understanding 

availability in systems.

• Failure detection and fault masking techniques

• Engineering tradeoff:  Cost of failures vs. cost of 
failure masking.

• At what level of system to mask failures?

• Leading into replication as a general strategy for fault 
tolerance

• Thought to leave you with:
• What if you have to survive the failure of entire 

computers?  Of a rack?  Of a datacenter?
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Summary
• RAID turns multiple disks into a larger, faster, more 

reliable disk

• RAID-0: Striping
Good when performance and capacity really matter, 
but reliability doesn’t

• RAID-1: Mirroring
Good when reliability and write performance matter, 
but capacity (cost) doesn’t 

• RAID-5: Rotating Parity
Good when capacity and cost matter or workload is 
read-mostly

• Good compromise choice
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