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Organizational Updates
• P1
• part A Due 10/6 -- Good Luck! You can do it! 
• Part B  Released – Due 10/16  (Recitation was yesteday) 

•Mid Term 10/18 – 10:30am – Noon 

• The class after us has a mid term, so we will try to finish ~5min early 
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Fault Tolerance Techniques So Far?
• Redundancy: information / time / physical redundancy
• E.g., used in airplanes

• Recovery: checkpointing and logging (ARIES)
• E.g., used in commercial databases

• Previous (concurrency) protocols rely on recovery techniques
• E.g., Two Phase Commit is not fault tolerant by itself

•Why not always use these techniques?
à Long wait in case of failure 3



Our Goal Today: Stay Up During Failures

• Provide a service
• Replicate the machines that serve clients
• Survive the failure of up to f replicas
• Provide identical service to a non-replicated version
• (except more reliable, and perhaps different performance)
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Outline for Today

Consistency when content is replicated

Primary-backup replication model

Consensus replication model
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Simple Examples of Replication
• Replicated web sites

• e.g., Yahoo! or Amazon:  
• DNS-based load balancing (DNS returns multiple IP addresses for 

each name)

• Hardware load balancers put multiple machines behind each IP 
address

• When is replication easy? When hard?
• Workload assumptions
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Read-only content

• Easy to replicate - just make multiple copies of it.
• Performance boost:  Get to use multiple servers to 

handle the load;
• Perf boost 2:  Locality.  We’ll see this later when we 

discuss CDNs, can often direct client to a replica near it
• Availability boost:  Can fail-over (done at both DNS level 

-- slower, because clients cache DNS answers -- and at 
front-end hardware level)
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But Read-write Data...
• Requires write replication, and some degree of consistency
• Strict Consistency

• Read always returns value from latest write
• Sequential Consistency

• All nodes see operations in some sequential order
• Operations of each process appear in-order in this sequence
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Sequential Consistency (1)

• Behavior of two processes operating on the same data item. The 
horizontal axis is time. 
• P1: Writes “W” value a to variable “x”
• P2: Reads `NIL’ from “x” first and then `a’

Adapted from: Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5 9



Sequential Consistency (2)

(b) A data store that is not sequentially consistent.

(a) A sequentially consistent data store. 
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But Read-write Data...
• Requires write replication, and some degree of consistency
• Strict Consistency

• Read always returns value from latest write
• Sequential Consistency

• All nodes see operations in some sequential order
• Operations of each process appear in-order in this sequence

• Causal Consistency
• All nodes see potentially causally related writes in same order
• But concurrent writes may be seen in different order on different machines

11



Causal Consistency (1)

This sequence is allowed with a causally-consistent 
store, but not with a sequentially consistent store.
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Causal Consistency (2)

A violation of a causally-consistent store. 

(W(x)a causally related to R(x)a, W(x)b.)
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But Read-write Data...
• Requires write replication, and some degree of consistency
• Strict Consistency

• Read always returns value from latest write
• Sequential Consistency

• All nodes see operations in some sequential order
• Operations of each process appear in-order in this sequence

• Causal Consistency
• All nodes see causally related writes in same order
• But concurrent writes may be seen in different order on different machines

• Eventual Consistency
• All nodes will learn eventually about all writes, in the absence of updates
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Example of Consistency Guarantees
• In practice we often have a choice

• Google Mail
• Sending mail is replicated to ~2 physically separated datacenters (users hate it 

when they think they sent mail and it got lost);  mail will pause while doing 
this replication.
• Q:  How long would this take with 2-phase commit?  in the wide area?

• Marking mail read is only replicated in the background - you can mark it read, 
the replication can fail, and you’ll have no clue (re-reading a read email once 
in a while is no big deal)

• Weaker consistency is cheaper if you can get away with it.
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Replication Strategies
What to replicate: State versus Operations
• Propagate only a notification of an update

• Sort of an “invalidation” protocol 
• Transfer data from one copy to another

• Read-to-Write ratio high, can propagate logs (save bandwidth) 
• Propagate the update operation to other copies

• Don’t transfer data modifications, only operations – “Active replication”

When to replicate: Push vs Pull
• Pull Based

• Replicas/Clients poll for updates (caches)
• Push Based

• Server pushes updates (stateful) 
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Outline for Today

Consistency when content is replicated

Primary-backup replication model

Consensus replication model
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Assumptions Today
• Group membership manager
• Allow replica nodes to join/leave

• Fail-stop (not Byzantine) failure model
• Servers might crash, might come up again

• Delayed/lost messages

• Failure detector
• E.g., process-pair monitoring, etc.
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Primary-Backup: Remote Write Protocol
•Writes always go to primary, read from any backup

• Implementation
• Stream the log

• Common in practice
• Simple

• Are updates blocking?
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Local-Write P-B Protocol
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Primary migrates to the process wanting to process update
For performance, use non-blocking op. 
What does this scheme remind you of?



Primary-Backup Properties
• This looks cool. How many failures can we deal with? What are some 

problems?
• What do we do if a replica has failed?
• We wait... how long?  Until it’s marked dead.

• Advantage:  With N servers, can tolerate loss of N-1 copies
• Not a great solution if you want very tight response time even when 

something has failed:  Must wait for failure detector

• Note:  If you don’t care about strong consistency (e.g., the “mail read” 
flag), you can reply to client before reaching agreement with backups 
(sometimes called “asynchronous replication”). 21



Outline for Today

Consistency when content is replicated

Primary-backup replication model

Consensus replication model
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Quorum Based Consensus
• Designed to have fast response time even under failures
• Operate as long as majority of machines is still alive

• No master, per se
• To handle f failures, must have 2f + 1 replicas
• Also, for replicated-write => write to all replica’s not just one

• Usually boils down to Paxos [Lamport]
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Decompose the problem:

• Basic Paxos (“single decree”):
• One or more servers propose values
• System must agree on a single value as chosen
• Only one value is ever chosen

•Multi-Paxos:
• Combine several instances of Basic Paxos to agree on a series of values 

forming the log

The Paxos Approach

Some Slides Adapted from: John Ousterhout & Diego Ongaro, Stanford University. Implementing Replicated Logs with Paxos. 2013. 27



Requirements for Basic Paxos
• Correctness (safety):
• Only a single value may be chosen
• A machine never learns that a value has been chosen unless it really has been
• The agreed value X has been proposed by some node

• Liveness (termination) :
• Some proposed value is eventually chosen
• If a value is chosen, servers eventually learn about it

• Fault-tolerance:
• If less than N/2 nodes fail, the rest should reach agreement eventually w.h.p
• Liveness is not guaranteed
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[FLP’85] Impossibility Result
• Synchronous DS: bounded amount of time node can take to process 

and respond to a request
• Asynchronous DS: timeout is not perfect

Fischer-Lynch-Paterson Result
It is impossible for a set of processors in an asynchronous system to 
agree on a binary value, even if only a single processor is subject to an 
unannounced failure.

29



Paxos Components
• Proposers:
• Active: put forth particular values to be chosen
• Handle client requests

• Acceptors:
• Passive: respond to messages from proposers
• Responses represent votes that form consensus
• Store chosen value, state of the decision process

• For this presentation:
• Each Paxos server contains both components
• Ignore third role, aka Learner

• “Round”: (proposal, messages/voting, decision)
• We may need several rounds

Proposer   Acceptor

Proposer   Acceptor

Proposer   Acceptor
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Strawman: Basic Two-Phase
• Coordinator tells replicas:  “Value V”
• Replicas ACK
• Coordinator broadcasts “Commit!”

• This isn’t enough
•What if there’s more than 1 coordinator at the same time?
•What if new coordinator chooses a different value?
• What if some of the nodes or the coordinator fails during the 

communication?
•What if there is a network partition?
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Let’s Discuss Some Problems & Solutions
• Problem: can’t trust a single node
• Solution: everyone can potentially propose

• Problem: several concurrent proposers
• Solution: Quorum (require majority of acceptors)

• Problem: split votes, no proposer reaches majority
• Solution: acceptors need to allow updating of their value

• Problem: conflicting choices (due to updating)
• Solution a): prioritize proposal with highest unique time stamp

(Lamport clocks)
• Solution b): once majority has agreed on value, future proposals forced 

to propose/choose same value
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• Phase 1: Prepare message
• Find out about any chosen values
• Block older proposals that have not yet completed

• Phase 2: Accept message
• Ask acceptors to accept a specific value

• (Phase 3): Proposer decides
• If majority again: chosen value, commit.
• If no majority: delay and restart Paxos

Single Decree Paxos: Informal Description

Proposers Acceptors

Prepare Check,

Return

Accept

Wait for 
majority

Check Again,

Return
Wait for 
majority

Decision
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Single Decree Paxos: Protocol
Acceptors

3)Respond to Prepare(n):
• If n > minProposal then minProposal = n

Prepare-OK(acceptedProposal, acceptedValue)
else

Prepare-REJECT()

6)Respond to Accept(n, value):
• If n ≥ minProposal

acceptedProposal = minProposal = n
acceptedValue = value
Accept-OK()

else
Accept-REJECT()

Acceptors must record minProposal, acceptedProposal, and acceptedValue on stable storage (disk)

Proposers
1)Choose new proposal number n, value v
2)Broadcast Prepare(n) to all servers

4)When responses received from majority:
• If any acceptedValues returned

v = acceptedValue of highest acceptedProposal

5)Broadcast Accept(n, value) to all servers

6)When Accept-OK from majority
Value is chosen (Commit)

Else
Restart: goto 1, with larger number n
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Paxos
Examples
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a) Successful 
Round with a
Single Proposer b) Dueling

Proposers



Some Remarks
• Only proposer knows chosen value (majority accepted)

• Only a single value is chosen à MultiPaxos

• No guarantee that proposer’s original value v is chosen by itself

• Number n is basically a Lamport clock à always unique n

• Key invariant:

• If a proposal with value `v' is chosen, all higher proposals must have value `v’

• Dueling proposer

• Resolved using number n in prepare

• There are challenging corner cases
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Single Decree Paxos: Protocol
Acceptors

3)Respond to Prepare(n):
• If n > minProposal then minProposal = n

Prepare-OK(acceptedProposal, acceptedValue)
else

Prepare-REJECT()

6)Respond to Accept(n, value):
• If n ≥ minProposal

acceptedProposal = minProposal = n
acceptedValue = value
Accept-OK()

else
Accept-REJECT()

Acceptors must record minProposal, acceptedProposal, and acceptedValue on stable storage (disk)

Proposers
1)Choose new proposal number n, value v
2)Broadcast Prepare(n) to all servers

4)When responses received from majority:
• If any acceptedValues returned

v = acceptedValue of highest acceptedProposal

5)Broadcast Accept(n, value) to all servers

6)When Accept-OK from majority
Value is chosen (Commit)

Else
Restart (goto 1, with larger number n)
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Paxos is widespread!
• Industry and academia 
•Google: Chubby (distributed lock service) 
• Yahoo: Zookeeper (distributed lock service) 
•MSR: Frangipani (distributed lock service)
•OpenSource implementations

§Libpaxos (paxos based atomic broadcast) 
§Zookeeper is open source, integrated w/Hadoop 

Paxos slides adapted from Jinyang Li, NYU; 38



Paxos History
It took 25 years to come up with safe protocol
• 2PC appeared in 1979 (Gray)

• In 1981, a basic, unsafe 3PC was proposed (Stonebraker)

• In 1998, the safe, mostly live Paxos appeared (Lamport)

• 2001 ”Paxos made simple”. 

• In ~2007 RAFT appears 
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More Remarks
• Paxos is painful to get right, particularly the corner cases.  Start 

from a good implementation if you can.  See Yahoo’s 
“Zookeeper” as a starting point.

• There are lots of optimizations to make the common / no or 
few failures cases go faster;  if you find yourself implementing, 
research these.

• Paxos is expensive.  Usually, used for critical, smaller bits of 
data and to coordinate cheaper replication techniques such as 
primary-backup for big bulk data.
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Beyond PAXOS

•Many follow ups and variants 
• RAFT consensus algorithm 
• https://raft.github.io/

• Great visualization of how it work 
• http://thesecretlivesofdata.com/raft/

https://raft.github.io/
http://thesecretlivesofdata.com/raft/


Summary
• Primary-backup
• Writes handled by primary, stream log to backup(s)
• Replicas are “passive”, follow primary
• Good:  Simple protocol. N machines, can handle N-1 failures
• Bad:  Slow response times in case of failures.

• Quorum consensus
• Designed to have fast response time even under failures
• Replicas are “active” - participate in protocol;  there is no master, 

per se.
• Good:  Clients don’t even see the failures
• Bad:  More complex (corner cases). To handle f failures, must have 

2f + 1 replicas.
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