
Lecture 09 – Distributed Concurrency
Management

The Two Phase Commit Protocol

15-440 Distributed Systems

Thursday, September 27th, 2018

Logistics Updates

• P1 Part A checkpoint (was due 9/25)
• Part A due: Saturday 10/6 (6-week drop deadline 10/8)
• Part B due: Tuesday 10/16

• HW2 will be released 10/01
• HW 2 due: Friday, 10/10 (tentative, maybe 10/12)
• (*No Late Days*) => time to prepare for Mid term

• We’re currently grading HW1
• HW1 solutions should come online soon

2

Today's Lecture Outline

• Transactions and Consistency
• Database terminology

• Part I: Single Server Case
• (not covered well in book)
• Two Phase Locking

• Part II: Distributed Transactions
• Two Phase Commit (Tanenbaum 8.5)

3

Assumptions for Today

a) Ignore failures in first half
• Concurrency is our main concern

b) To deal with failures
• Assume a form of logging, where every machine writes

information down *before* operating on it, to recover
from simple failures. Recover after failure.

• Next lecture: Logging and Crash Recovery

4

Database transactions

• Background: Database Researchers

• Defined: “Transactions”
• Collections of Reads + Writes to Global State

• Appear as a single, “indivisible” operation
• Standard Models for Reliable Storage (visit later)

• Desirable Characteristics of Transactions
• Atomicity, Consistency, Isolation, Durability
• Also referred to as the “ACID” Acronym!

5

Transactions: ACID Properties

• Atomicity: Each transaction completes in its
entirely, or is aborted. If aborted, should not have
have effect on the shared global state.
• Example: Update account balance on multiple servers

• Consistency: Each transaction preserves a set of
invariants about global state. (Nature of invariants
is system dependent).
• Example: in a bank system, law of conservation of $$

6

• Isolation: Also means serializability. Each
transaction executes as if it were the only one with
the ability to RD/WR shared global state.

• Durability: Once a transaction has been
completed, or “committed” there is no going back.
In other words there is no “undo”.

• Transactions can also be nested

• “Atomic Operations” => Atomicity + Isolation

7

Transactions: ACID Properties

A Transaction Example: Bank

• Array Bal[i] stores balance of Account “i”
• Implement: xfer, withdraw, deposit

8

xfer(i, j, v):
if withdraw(i, v):

deposit(j, v)
else

abort

withdraw(i, v):
b = Bal[i] // Read
if b >= v // Test

Bal[i] = b-v // Write
return true

else
return false

deposit(j, v):
Bal[j] += v

A Transaction Example: Bank

• Imagine: Bal[x] = 100, Bal[y]=Bal[z]=0
• Two transactions => T1:xfer(x,y,60), T2: xfer(x,z,70)
• ACID Properties: T1 or T2 in some serial order

• T1; T2: T1 succeeds; T2 Fails. Bal[x]=40, Bal[y]=60
• T2; T1: T2 succeeds; T1 Fails. Bal[x]=30, Bal[z]=70

• What if we didn’t take care? Is there a race condition?
• Updating Bal[x] with Read/Write interleaving of T1,T2

9

xfer(i, j, v):
if withdraw(i, v):

deposit(j, v)
else

abort

withdraw(i, v):
b = Bal[i] // Read
if b >= v // Test

Bal[i] = b-v // Write
return true

else
return false

deposit(j, v):
Bal[j] += v

A Transaction Example: Bank

• Imagine: Bal[x] = 100, Bal[y]=Bal[z]=0
• Two transactions => T1:xfer(x,y,60), T2: xfer(x,z,70)
• ACID violation: Not Isolated, Not Consistent

• Updating Bal[x] with Read/Write interleaving of T1,T2
• Bal[x] = 30 or 40; Bal[y] = 60; Bal [z] = 70

• For Consistency, implemented sumbalance()
• State invariant sumbalance=100 violated! We created $$

10

xfer(i, j, v):
if withdraw(i, v):

deposit(j, v)
else

abort

withdraw(i, v):
b = Bal[i] // Read
if b >= v // Test

Bal[i] = b-v // Write
return true

else
return false

deposit(j, v):
Bal[j] += v

sumbalance(i, j, k):
return Bal[i]+Bal[j]+ Bal[k]

Implement transactions with locks

• Use locks to wrap xfer

11

xfer(i, j, v):
lock()
if withdraw(i, v):

deposit(j, v)
else

abort
unlock()

However, is this the correct
approach? (Hint: efficiency)

Sequential bottleneck due to
global lock. Solution?

xfer(i, j, v):
lock(i)
if withdraw(i, v):

unlock(i)
lock(j)
deposit(j, v)
unlock(j)

else
unlock(i)
abort

Is this fixed then?
No, consistency violation.
sumbalance() after unlock(i)

Implement transactions with locks

12

Are we done then?
xfer(i, j, v):

lock(i)
if withdraw(i, v):

lock(j)
deposit(j, v)
unlock(i);
unlock(j)

else
unlock(i)
abort

Nope, deadlock.

Bal[x]=Bal[y]=100
xfer(x,y,40) and
xfer (y, x, 30)

Fix: Release locks when update
of all state variables complete.

Implement transactions with locks

13

xfer(i, j, v):
lock(min(i,j); lock(max (i,j))
if withdraw(i, v):

deposit(j, v)
unlock(i); unlock(j)

else
unlock(i); unlock(j)
abort

This works. :)

Insight: Need unique global order for acquiring
locks.

Motivation for 2-Phase Locking

Acquiring Locks in a Unique Order

• Consider “Wait-for” graph for state of locks
• Vertices represent transactions
• Edge from vertex i to vertex j if transaction i is waiting for lock held by transaction j.

• What does a cycle mean?

• Can a cycle occur if we acquire locks in unique order?
• No. Label edges with its lock ID. For any cycle, there must be some pair of edges (i,

j), (j, k) labeled with values x & y. As k holds y, but waits for x: y<x.
• Transaction j is holding lock x and it wants lock y, so y > x.
• Implies that j is not acquiring its lock in proper order.

• General scheme: 2-phase locking
• More precisely: strong strict two phase locking

14

2-Phase Locking Variant

• General 2-phase locking

• Phase 1: Acquire or Escalate Locks (e.g. read => write)

• Phase 2: Release or de-escalate lock

• Strict 2-phase locking

• Phase 1: (same as before)

• Phase 2: Release WRITE lock at end of transaction only

• Strong Strict 2-phase locking

• Phase 1: (same as before)

• Phase 2: Release ALL locks at end of transaction only.

• Most common version, required for ACID properties

15

2-Phase Locking

• Why not always use strong-strict 2-phase locking?
• A transaction may not know the locks it needs in advance

16

if Bal(yuvraj) < 100:
x = find_richest_prof()
transfer_from(x, yuvraj)

• Other ways to handle deadlocks
• Lock manager builds a “waits-for” graph. On finding a

cycle, choose offending transaction and force abort
• Use timeouts: Transactions should be short. If hit time

limit, find transaction waiting for a lock and force abort.

Transactions – split into 2 phases

• Phase 1: Preparation:
• Determine what has to be done, how it will change state,

without actually altering it.
• Generate Lock set “L”
• Generate List of Updates “U”

• Phase 2: Commit or Abort
• Everything OK, then update global state
• Transaction cannot be completed, leave global state as is
• In either case, RELEASE ALL LOCKS

17

Example

18

xfer(i, j, v):
L={i,j} // Locks
U=[] //List of Updates
begin(L) //Begin transaction, Acquire locks
bi = Bal[i]
bj = Bal[j]
if bi >= v:

Append(U,Bal[i] <- bi – v)
Append(U, Bal[j] <- bj + v)
commit(U,L)

else
abort(L)

commit(U,L):
Perform all updates in U
Release all locks in L

abort(L):
Release all locks in L

Question: So, what would “commit” and ”abort” look like?

Today's Lecture Outline

• Consistency for multiple-objects, multiple-servers

• Part I: Single Server Case
• (not covered well in book)
• Two Phase Locking

• Part II: Distributed Transactions
• Two Phase Commit (Tanenbaum 8.6)

19

Distributed Transactions?

• Partition databases across multiple machines for
scalability
• (E.g., machine 1 responsible for account i,

machine 2 responsible for account j)
• Transaction often touch more than one partition
• How do we guarantee that all of the partitions

commit the transactions or none commit the
transactions?
• Transferring money from i to j.
• Requirement: both banks/machines do it, or neither

20

Enabling Distributed Transactions

• Similar idea as before, but:
• State spread across servers (maybe even WAN)
• Failures

• Overall Idea:
• Client initiates transaction. Makes use of “coordinator”
• All other relevant servers operate as “participants”
• Coordinator assigns unique transaction ID (TID)

• Strawman solution
• 2-phase commit protocol

21

Strawman solution

• Even without failures, a lot
can go wrong

• Account j on Srv 2 has
only $90

• Account j doesn’t exist!

• Violates which part of
ACID

22

2-Phase Commit

• Phase 1: Prepare & Vote
• Participants figure out all state changes
• Each determines if it can complete the transaction
• Communicate with coordinator

• Phase 2: Commit
• Coordinator broadcasts to participants: COMMIT / ABORT
• If COMMIT, participants make respective state changes

23

Implementing 2-Phase Commit

• Implemented as a set of
messages

24

Implementing 2-Phase Commit

• Implemented as a set of
messages

• Messages in first phase
• A: Coordinator sends “CanCommit?”

to participants

25

Implementing 2-Phase Commit

• Implemented as a set of
messages

• Messages in first phase
• A: Coordinator sends “CanCommit?”

to participants
• B: Participants respond:

“VoteCommit” or “VoteAbort”

26

Implementing 2-Phase Commit

• Implemented as a set of
messages

• Messages in first phase
• A: Coordinator sends “CanCommit?”

to participants
• B: Participants respond:

“VoteCommit” or “VoteAbort”

27

• Messages in the second phase
• A: All “VoteCommit”: , Coord sends “DoCommit”
• If any “VoteAbort”: abort transaction. Coordinator

sends “DoAbort” to everyone => release locks

Implementing 2-Phase Commit

• Implemented as a set of
messages

• Messages in first phase
• A: Coordinator sends “CanCommit?”

to participants
• B: Participants respond:

“VoteCommit” or “VoteAbort”

28

• Messages in the second phase
• A: All “VotedCommit”: , Coord sends “DoCommit”
• If any “VoteAbort”: abort transaction. Coordinator

sends “DoAbort” to everyone => release locks

Example for 2PC

• Bank Account “i” at Server 1, “j” at Server 2.

29

L={i}
Begin(L) // Acq. Locks
U=[] //List of Updates
b=Bal[i]
if b >= v:

Append(U, Bal[i] <- b – v)
vote commit

else
vote abort

L={j}
Begin(L) // Acq. Locks
U=[] //List of Updates
b=Bal[j]
Append(U, Bal[j] <- b + v)
vote commit

Server 1 implements transaction

Server 2 implements transaction

Server 2 can assume that the account of “i” has enough money,
otherwise whole transaction will abort.

What about locking? Locks held by individual participants
- Acquire lock at start of prep process, release at Commit/Abort

Properties of 2-Phase Commit

• Correctness
• Neither can commit unless both agreed to commit

• Performance
• 3N messages per transaction

• How to handle failure?
• Timeouts à performance bad in case of failure!

30

Deadlocks and Livelocks

• Distributed deadlock
• Cyclic dependency of locks by transactions across

servers
• In 2PC this can happen if participants unable to

respond to voting request (e.g. still waiting on a lock on
its local resource)

• Handled with a timeout. Participants times out, then
votes to abort. Retry transaction again.
• Addresses the deadlock concern
• However, danger of LIVELOCK – keep trying!

31

Timeout and Failure Cases 1

• Coordinator times out after “CanCommit?”
• Hasn’t sent any commit messages, safely abort
• Conservative. Why?
• Preserve correctness, sacrifice performance

• Participant times out after “VoteAbort”
• Can safely abort unilaterally.
• Why?

32

Timeout and Failure Cases 2

• Participant times out after “VoteCommit”
• Are unilateral decisions possible? Commit, Abort?
• Participant could wait forever

• Solution: ask another participant (gossip protocol)
• Learn coordinator’s decision: do the same

• Assumption: non-Byzantine failure model
• Other participant hasn’t voted: abort is safe. Why?

• Coordinator has not made decision
• No reply or other participant also “VoteCommit”: wait

• 2PC is “blocking protocol” à 3PC in book.
33

2 Phase Commit in Practice

2PC widely used in practice

Logging and Crash Recovery
• Crucial to handle crashes / reboots

(next lecture)
• Very powerful and resilient when paired with RAID

(3 lectures from now)

34

NDB Cluster

Summary

• Distributed consistency management
• ACID Properties desirable
• Single Server case: use locks + 2-phase locking

(strict 2PL, strong strict 2PL), transactional
support for locks

• Multiple server distributed case: use 2-phase
commit for distributed transactions. Need a
coordinator to manage messages from
participants

• 2PC can become a performance bottleneck

35

Additional Material

Overview:
• 2PC notation from the Book
• Terminology used by messages different, but

essentially the protocol is the same
• Pointers to 3PC (fully described in the book)

36

Two-Phase Commit (1)

• Coordinator/Participant can be blocked in 3 states:
• Participant: Waiting in INIT state for VOTE_REQUEST
• Coordinator: Blocked in WAIT state, listening for votes
• Participant: blocked in READY state, waiting for global vote

(a) The finite state machine for the coordinator in 2PC.
(b) The finite state machine for a participant.

Two-Phase Commit (2)

• What if a “READY” participant does not receive

the global commit? Can’t just abort => figure out

what message a co-ordinator may have sent.

• Approach: ask other partcipants

• Take actions on response on any of the participants

• E.g. P is in READY state, asks other “Q” participants

What happens if everyone is in ”READY” state?

Two-Phase Commit (3)

• For recovery, must save state to persistent storage

(e.g. log), to restart/recover after failure.

• Participant (INIT): Safe to local abort, inform Coordinator

• Participant (READY): Contact others

• Coordinator (WAIT): Retransmit VOTE_REQ

• Coordinator (WAIT/Decision): Retransmit

VOTE_COMMIT

2PC: Actions by Coordinator

Why do we have the ”write to LOG” statements?

2PC: Actions by Participant

Wait for REQUESTS

If Decision to COMMIT
LOG=>Send=> Wait

No response?
Ask others

If global decision,
COMMIT OR ABORT

Else, Local Decision
LOG => send

2PC: Handling Decision Request

Note, participant can only help others if it has reached

a global decision and committed it to its log.

What if everyone has received VOTE_REQ, and Co-ordinator crashes?

