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Logistics Updates

• P1 Part A checkpoint ( was due 9/25)
• Part A due: Saturday 10/6 (6-week drop deadline 10/8)
• Part B due: Tuesday 10/16 

• HW2 will be released 10/01
• HW 2 due: Friday, 10/10 (tentative, maybe 10/12)
• (*No Late Days*) => time to prepare for Mid term 

• We’re currently grading HW1
• HW1 solutions should come online soon
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Today's Lecture Outline 

• Transactions and Consistency
• Database terminology

• Part I: Single Server Case 
• (not covered well in book)
• Two Phase Locking 

• Part II: Distributed Transactions
• Two Phase Commit  (Tanenbaum 8.5)
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Assumptions for Today

a) Ignore failures in first half
• Concurrency is our main concern

b) To deal with failures
• Assume a form of logging, where every machine writes 

information down *before* operating on it, to recover 
from simple failures. Recover after failure.

• Next lecture: Logging and Crash Recovery
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Database transactions

• Background: Database Researchers

• Defined: “Transactions” 
• Collections of Reads + Writes to Global State 

• Appear as a single, “indivisible” operation 
• Standard Models for Reliable Storage (visit later) 

• Desirable Characteristics of Transactions 
• Atomicity, Consistency, Isolation, Durability  
• Also referred to as the “ACID” Acronym! 
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Transactions: ACID Properties 

• Atomicity: Each transaction completes in its 
entirely, or is aborted. If aborted, should not have 
have effect on the shared global state. 
• Example: Update account balance on multiple servers 

• Consistency: Each transaction preserves a set of 
invariants about global state. (Nature of invariants 
is system dependent). 
• Example: in a bank system, law of conservation of $$ 

6



• Isolation: Also means serializability. Each 
transaction executes as if it were the only one with 
the ability to RD/WR shared global state.  

• Durability: Once a transaction has been 
completed, or “committed” there is no going back. 
In other words there is no “undo”. 

• Transactions can also be nested 

• “Atomic Operations” => Atomicity + Isolation 
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Transactions: ACID Properties 



A Transaction Example: Bank 

• Array Bal[i] stores balance of Account “i”
• Implement: xfer, withdraw, deposit 
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xfer(i, j, v): 
if withdraw(i, v):  

deposit(j, v) 
else 

abort

withdraw(i, v): 
b = Bal[i]      // Read
if b >= v       // Test   

Bal[i] = b-v // Write 
return true 

else 
return false

deposit(j, v): 
Bal[j] += v



A Transaction Example: Bank 

• Imagine: Bal[x] = 100, Bal[y]=Bal[z]=0
• Two transactions => T1:xfer(x,y,60), T2: xfer(x,z,70)
• ACID Properties: T1 or T2 in some serial order

• T1; T2: T1 succeeds; T2 Fails. Bal[x]=40, Bal[y]=60
• T2; T1: T2 succeeds; T1 Fails. Bal[x]=30, Bal[z]=70

• What if we didn’t take care?  Is there a race condition?
• Updating Bal[x] with Read/Write interleaving of T1,T2   
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xfer(i, j, v): 
if withdraw(i, v):  

deposit(j, v) 
else 

abort

withdraw(i, v): 
b = Bal[i]      // Read
if b >= v       // Test   

Bal[i] = b-v // Write 
return true 

else 
return false

deposit(j, v): 
Bal[j] += v



A Transaction Example: Bank 

• Imagine: Bal[x] = 100, Bal[y]=Bal[z]=0
• Two transactions => T1:xfer(x,y,60), T2: xfer(x,z,70)
• ACID violation: Not Isolated, Not Consistent

• Updating Bal[x] with Read/Write interleaving of T1,T2
• Bal[x] = 30 or 40;  Bal[y] = 60; Bal [z] = 70

• For Consistency, implemented sumbalance()
• State invariant sumbalance=100 violated!  We created $$   
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xfer(i, j, v): 
if withdraw(i, v):  

deposit(j, v) 
else 

abort

withdraw(i, v): 
b = Bal[i]      // Read
if b >= v       // Test   

Bal[i] = b-v // Write 
return true 

else 
return false

deposit(j, v): 
Bal[j] += v

sumbalance(i, j, k): 
return Bal[i]+Bal[j]+ Bal[k]



Implement transactions with locks

• Use locks to wrap xfer
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xfer(i, j, v):
lock() 
if withdraw(i, v):  

deposit(j, v) 
else 

abort
unlock()

However, is this the correct 
approach? (Hint: efficiency)

Sequential bottleneck due to 
global lock. Solution? 

xfer(i, j, v):
lock(i) 
if withdraw(i, v):  

unlock(i)
lock(j)
deposit(j, v)
unlock(j) 

else 
unlock(i)
abort

Is this fixed then? 
No, consistency violation. 
sumbalance() after unlock(i) 



Implement transactions with locks
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Are we done then? 
xfer(i, j, v):

lock(i) 
if withdraw(i, v):  

lock(j)
deposit(j, v)
unlock(i);
unlock(j) 

else 
unlock(i)
abort

Nope, deadlock.

Bal[x]=Bal[y]=100
xfer(x,y,40) and 
xfer (y, x, 30)

Fix: Release locks when update
of all state variables complete. 



Implement transactions with locks
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xfer(i, j, v):
lock(min(i,j); lock(max (i,j)) 
if withdraw(i, v):  

deposit(j, v)
unlock(i); unlock(j) 

else 
unlock(i); unlock(j)
abort

This works. :)

Insight: Need unique global order for acquiring 
locks.

Motivation for 2-Phase Locking



Acquiring Locks in a Unique Order

• Consider “Wait-for” graph for state of locks
• Vertices represent transactions
• Edge from vertex i to vertex j if transaction i is waiting for lock held by transaction j.

• What does a cycle mean?

• Can a cycle occur if we acquire locks in unique order?
• No. Label edges with its lock ID. For any cycle, there must be some pair of edges (i, 

j), (j, k) labeled with values x & y. As k holds y, but waits for x: y<x.
• Transaction j is holding lock x and it wants lock y, so y > x.
• Implies that j is not acquiring its lock in proper order.

• General scheme: 2-phase locking 
• More precisely: strong strict two phase locking 
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2-Phase Locking Variant 

• General 2-phase locking 

• Phase 1: Acquire or Escalate Locks (e.g. read => write)

• Phase 2: Release or de-escalate lock 

• Strict 2-phase locking 

• Phase 1: (same as before) 

• Phase 2: Release WRITE lock at end of transaction only

• Strong Strict 2-phase locking 

• Phase 1: (same as before) 

• Phase 2: Release ALL locks at end of transaction only. 

• Most common version, required for ACID properties 
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2-Phase Locking 

• Why not always use strong-strict 2-phase locking?
• A transaction may not know the locks it needs in advance
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if Bal(yuvraj) < 100: 
x = find_richest_prof()  
transfer_from(x, yuvraj) 

• Other ways to handle deadlocks
• Lock manager builds a “waits-for” graph. On finding a 

cycle, choose offending transaction and force abort 
• Use timeouts: Transactions should be short. If hit time 

limit, find transaction waiting for a lock and force abort. 



Transactions – split into 2 phases

• Phase 1: Preparation: 
• Determine what has to be done, how it will change state, 

without actually altering it.
• Generate Lock set “L” 
• Generate List of Updates “U” 

• Phase 2: Commit or Abort 
• Everything OK, then update global state 
• Transaction cannot be completed, leave global state as is
• In either case, RELEASE ALL LOCKS 
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Example
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xfer(i, j, v):
L={i,j} // Locks 
U=[]    //List of Updates   
begin(L) //Begin transaction, Acquire locks
bi = Bal[i]
bj = Bal[j]
if bi >= v:

Append(U,Bal[i] <- bi – v)
Append(U, Bal[j] <- bj + v) 
commit(U,L) 

else 
abort(L)

commit(U,L):
Perform all updates in U 
Release all locks in L

abort(L): 
Release all locks in L

Question: So, what would “commit” and ”abort” look like?  



Today's Lecture Outline 

• Consistency for multiple-objects, multiple-servers

• Part I: Single Server Case 
• (not covered well in book)
• Two Phase Locking 

• Part II: Distributed Transactions
• Two Phase Commit  (Tanenbaum 8.6)
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Distributed Transactions?

• Partition databases across multiple machines for 
scalability
• (E.g., machine 1 responsible for account i, 

machine 2 responsible for account j) 
• Transaction often touch more than one partition
• How do we guarantee that all of the partitions 

commit the transactions or none commit the 
transactions?
• Transferring money from i to j.
• Requirement: both banks/machines do it, or neither
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Enabling Distributed Transactions 

• Similar idea as before, but: 
• State spread across servers (maybe even WAN) 
• Failures

• Overall Idea: 
• Client initiates transaction. Makes use of “coordinator”
• All other relevant servers operate as “participants” 
• Coordinator assigns unique transaction ID (TID)

• Strawman solution
• 2-phase commit protocol  
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Strawman solution

• Even without failures, a lot 
can go wrong

• Account j on Srv 2 has 
only $90

• Account j doesn’t exist!

• Violates which part of 
ACID
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2-Phase Commit

• Phase 1: Prepare & Vote 
• Participants figure out all state changes 
• Each determines if it can complete the transaction
• Communicate with coordinator 

• Phase 2: Commit
• Coordinator broadcasts to participants: COMMIT / ABORT 
• If COMMIT, participants make respective state changes 

23



Implementing 2-Phase Commit

• Implemented as a set of 
messages 
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Implementing 2-Phase Commit

• Implemented as a set of 
messages 

• Messages in first phase 
• A: Coordinator sends “CanCommit?” 

to participants
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Implementing 2-Phase Commit

• Implemented as a set of 
messages 

• Messages in first phase 
• A: Coordinator sends “CanCommit?” 

to participants
• B: Participants respond: 

“VoteCommit” or “VoteAbort”
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Implementing 2-Phase Commit

• Implemented as a set of 
messages 

• Messages in first phase 
• A: Coordinator sends “CanCommit?” 

to participants
• B: Participants respond: 

“VoteCommit” or “VoteAbort”
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• Messages in the second phase 
• A: All “VoteCommit”: , Coord sends “DoCommit”
• If any “VoteAbort”: abort transaction. Coordinator 

sends “DoAbort” to everyone => release locks



Implementing 2-Phase Commit

• Implemented as a set of 
messages 

• Messages in first phase 
• A: Coordinator sends “CanCommit?” 

to participants
• B: Participants respond: 

“VoteCommit” or “VoteAbort”
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• Messages in the second phase 
• A: All “VotedCommit”: , Coord sends “DoCommit”
• If any “VoteAbort”: abort transaction. Coordinator 

sends “DoAbort” to everyone => release locks



Example for 2PC 

• Bank Account “i” at Server 1, “j” at Server 2. 
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L={i}  
Begin(L) // Acq. Locks  
U=[]  //List of Updates   
b=Bal[i]
if b >= v: 

Append(U, Bal[i] <- b – v)
vote commit 

else
vote abort

L={j}  
Begin(L) // Acq. Locks  
U=[]  //List of Updates   
b=Bal[j]
Append(U, Bal[j] <- b + v)
vote commit 

Server 1 implements transaction

Server 2 implements transaction

Server 2 can assume that the account of “i” has enough money, 
otherwise whole transaction will abort. 

What about locking?  Locks held by individual participants 
- Acquire lock at start of prep process, release at Commit/Abort 



Properties of 2-Phase Commit

• Correctness
• Neither can commit unless both agreed to commit

• Performance
• 3N messages per transaction

• How to handle failure?
• Timeouts à performance bad in case of failure!
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Deadlocks and Livelocks 

• Distributed deadlock 
• Cyclic dependency of locks by transactions across 

servers 
• In 2PC this can happen if participants unable to 

respond to voting request (e.g. still waiting on a  lock on 
its local resource) 

• Handled with a timeout. Participants times out, then 
votes to abort. Retry transaction again. 
• Addresses the deadlock concern 
• However, danger of LIVELOCK – keep trying! 
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Timeout and Failure Cases 1

• Coordinator times out after “CanCommit?”
• Hasn’t sent any commit messages, safely abort
• Conservative. Why?
• Preserve correctness, sacrifice performance

• Participant times out after “VoteAbort”
• Can safely abort unilaterally.
• Why?
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Timeout and Failure Cases 2

• Participant times out after “VoteCommit”
• Are unilateral decisions possible? Commit, Abort?
• Participant could wait forever

• Solution: ask another participant (gossip protocol)
• Learn coordinator’s decision: do the same

• Assumption: non-Byzantine failure model
• Other participant hasn’t voted: abort is safe. Why?

• Coordinator has not made decision
• No reply or other participant also “VoteCommit”: wait

• 2PC is “blocking protocol” à 3PC in book.
33



2 Phase Commit in Practice

2PC widely used in practice

Logging and Crash Recovery
• Crucial to handle crashes / reboots 

(next lecture)
• Very powerful and resilient when paired with RAID 

(3 lectures from now)
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NDB Cluster



Summary

• Distributed consistency management
• ACID Properties desirable 
• Single Server case: use locks + 2-phase locking 

(strict 2PL, strong strict 2PL), transactional 
support for locks

• Multiple server distributed case: use 2-phase 
commit for distributed transactions. Need a 
coordinator to manage messages from 
participants

• 2PC can become a performance bottleneck
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Additional Material 

Overview:
• 2PC notation from the Book
• Terminology used by messages different, but 

essentially the protocol is the same
• Pointers to 3PC (fully described in the book)
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Two-Phase Commit (1)

• Coordinator/Participant can be blocked in 3 states:
• Participant: Waiting in INIT state for VOTE_REQUEST 
• Coordinator: Blocked in WAIT state, listening for votes 
• Participant: blocked in READY state, waiting for global vote 

(a) The finite state machine for the coordinator in 2PC. 
(b) The finite state machine for a participant.



Two-Phase Commit (2)

• What if a “READY” participant does not receive 

the global commit? Can’t just abort => figure out 

what message a co-ordinator may have sent.

• Approach: ask other partcipants 

• Take actions on response on any of the participants

• E.g. P is in READY state, asks other “Q” participants 

What happens if everyone is in ”READY” state? 



Two-Phase Commit (3)

• For recovery, must save state to persistent storage 

(e.g. log), to restart/recover after failure. 

• Participant (INIT): Safe to local abort, inform Coordinator

• Participant (READY): Contact others

• Coordinator (WAIT): Retransmit VOTE_REQ

• Coordinator (WAIT/Decision): Retransmit 

VOTE_COMMIT



2PC: Actions by Coordinator

Why do we have the ”write to LOG” statements? 



2PC: Actions by Participant

Wait for REQUESTS

If Decision to COMMIT
LOG=>Send=> Wait

No response? 
Ask others 

If global decision,
COMMIT OR ABORT

Else, Local Decision
LOG => send



2PC: Handling Decision Request

Note, participant can only help others if it has reached 

a global decision and committed it to its log.

What if everyone has received VOTE_REQ, and Co-ordinator crashes? 


