
Distributed Systems

15-440/640

Fall 2018

8 – Distributed Mutual
Exclusion

Readings: Tanenbaum Book, Chapters 6.3 and 6.4.

Daniel S. Berger 15-440 Spring 2018 Carnegie Mellon University

How to scale?
Two fundamental approaches:

2

Scale Up
(aka “vertical scaling”)

Scale Out
(aka “horizontal scaling”)

add resources to a single node
e.g., more and faster CPUs, GPUs

add more nodes to the distributed
system

Challenges when scaling out?

What is “Scalability”?
Ability to easily and rapidly grow the system

A consequence of success failing systems rarely grow :-)

no application changes
huge win in terms of cost and time

application has to conform to scale
out design - may involve total rewrite

Distributed Databases
Distributed and Cluster Filesystems
Distributed Computation Frameworks (→ P1)

Scale-Out Distributed Systems

3

What if concurrent accesses to shared resources? Inconsistent
data, corrupted
resources..How to coordinate access to shared resources?

while true:
Perform local operations

Acquire(lock)
Execute critical section

Release(lock)

Mutex Requirements

1. Correctness/Safety: At most one process holds the
lock/enter C.S. at a time

2. Fairness: Any process that makes a request must be
granted lock
• Implies that system must be deadlock-free
• Assumes that no process will hold onto a lock indefinitely
• Eventual fairness: Waiting process will not be excluded

forever
• Bounded fairness: Waiting process will get lock within some

bounded number of cycles (typically n)

4

Distributed Database

• San Fran customer adds $100, NY bank adds 1% interest
• San Fran will have $1,111 and NY will have $1,110

• Updating a replicated database and leaving it in an
inconsistent state.

(San Francisco) (New York)

(+$100) (+1%
)

5

Distributed Mutex Requirements

1. Low message overhead
2. No bottlenecks
3. Tolerate out-of-order messages
4. Allow processes to join protocol or to drop out
5. Tolerate failed processes
6. Tolerate dropped messages

6

No shared memory → message passing.

Assumptions:
• Total number of processes is fixed at n
• No process fails or misbehaves
• Communication never fails, but messages may be reordered

Fo
cu

s
to

da
y

multiple senders

Goal of Today's Lecture

Centralized Mutual Exclusion
Bully Leader Election
Decentralized Mutual Exclusion
Totally-Ordered Multicast
Lamport Mutual Exclusion
Ricart & Agrawala Mutual Exclusion
Token Ring Mutual Exclusion

7

Understand trade-offs of main algorithms:

Goal of Today's Lecture

Centralized Mutual Exclusion
Bully Leader Election
Decentralized Mutual Exclusion
Totally-Ordered Multicast
Lamport Mutual Exclusion
Ricart & Agrawala Mutual Exclusion
Token Ring Mutual Exclusion

8

Understand trade-offs of main algorithms:

Centralized Algorithm (1)

@ Client → Acquire:
Send (Request, i) to coordinator
Wait for reply

@ Server:
while true:
 m = Receive()
 If m == (Request, i):
If Available():

 Send (Grant) to i

9

@ Server:
while true:

 m = Receive()

 If m == (Request, i):
If Available():

 Send (Grant) to I

 else:

 Add i to Q

10

Centralized Algorithm (2)

@ Server:
while true:
 m = Receive()
 If m == (Request, i):
 If Available():

 Send (Grant) to I
 else:
 Add i to Q
 If m == (Release)&&!empty(Q):
 Remove ID j from Q
 Send (Grant) to j

@ Client → Release:
Send (Release) to coordinator

11

Centralized Algorithm (3)

• Correctness:
• Clearly safe
• Fairness depends on queuing policy.

• E.g., if always gave priority to lowest process ID, then
processes 1 & 2 can lock out 3

• Performance
• "cycle" is a complete round of the protocol with one

process i entering its critical section and then exiting.
• 3 messages per cycle (1 request, 1 grant, 1 release)
• Lock server creates bottleneck

• Issues
• What happens when coordinator crashes?
• What happens when it reboots?

12

Centralized Algorithm: Summary

What can we do when coordinator crashes?

Goal of Today's Lecture

Centralized Mutual Exclusion
Bully Leader Election
Decentralized Mutual Exclusion
Totally-Ordered Multicast
Lamport Mutual Exclusion
Ricart & Agrawala Mutual Exclusion
Token Ring Mutual Exclusion

13

Understand trade-offs of main algorithms:

Selecting a Leader (Elections)
Goal: anyone can trigger election which
automatically determines a unique new leader

14

Stage 1: Process P notices that leader has failed
Stage 2: Election Algorithm, e.g., Bully Algorithm

1. P sends an ELECTION message to all processes with
higher numbers.

2. If no one responds, P wins the election and becomes
coordinator.

3. If one of the higher-ups answers, it takes over. P’s job
is done.

Non-goals: fairness, majorities, selfish notes

The Bully Leader-Election Algorithm (1)

a) Process 4 holds an election
b) Processes 5 and 6 respond, telling 4 to stop
c) Now 5 and 6 each hold an election

15

d) Process 6 tells 5 to stop
e) Process 6 wins and tells everyone.

16

The Bully Leader-Election Algorithm (2)

Simple but effective. More algorithms in the book.

A Ring Algorithm

• Election algorithm using a ring.

17

Goal of Today's Lecture

Centralized Mutual Exclusion
Bully Leader Election
Decentralized Mutual Exclusion
Totally-Ordered Multicast
Lamport Mutual Exclusion
Ricart & Agrawala Mutual Exclusion
Token Ring Mutual Exclusion

18

Understand trade-offs of main algorithms:

Decentralized Algorithm (1)

Assume that there are n coordinators
• Get a majority vote from m > n/2 coordinators
• Reply immediately with GRANT or DENY

19

Minimize state that is distributed across nodes
Opposite extreme to centralized algorithm

20

Decentralized Algorithm (2)

Assume that there are n coordinators
• Get a majority vote from m > n/2 coordinators
• Reply immediately with GRANT or DENY

Minimize state that is distributed across nodes
Opposite extreme to centralized algorithm

• Backoff and retry later
• Large numbers of nodes

requesting access can
affect availability

• Starvation!

 What if you get less than m votes?

• Correctness:
• Majority ensures safety
• Fairness depends on random chance

• Performance
• 2m + m messages per attempt to get majority
• unbounded number of messages per cycle

• Issues
• Node failures are still a problem (forgetting vote on reboot)
• Backoff and retry problem
• Starvation

21

Decentralized Algorithm: Summary

Goal of Today's Lecture

Centralized Mutual Exclusion
Bully Leader Election
Decentralized Mutual Exclusion
Totally-Ordered Multicast
Lamport Mutual Exclusion
Ricart & Agrawala Mutual Exclusion
Token Ring Mutual Exclusion

22

Understand trade-offs of main algorithms:

Recall Logical Lamport Clocks

23

3*1 + 0 = 3

3*1 + 2 = 5

3*2 + 0 = 6

3*3 + 1
= 10 3*4 +1 = 13

3*5 +2 = 17

Total order: break ties using the process ID: L(e) = M * Li(e) + i

A Total Order Would Be Useful

• Can use Lamport’s to totally order
• But would need to be able to roll back events

• Maybe a large number of them!

• Could we make sure things are in the right order before
processing?

(San Francisco) (New York)

(+$100) (+1%
)

24

Totally-Ordered Multicast

• A multicast operation by which all messages are
delivered in the same order to each receiver.

• Distributed data structure (priority queue)
• Queue (database) updates until they’re ACKed
• Uses TO-Lamport Clocks:

• Each message is timestamped with the current logical
time of its sender.

• Multicast messages are also sent back to the sender.
• Assume all messages sent by one sender are

received in the order they were sent and that no
messages are lost.

25

Book pp. 313

Totally-Ordered Multicast

• Multicast messages + local timestamp-ordered queue
• Multicasts an ACK to all other processes
• Process only if *both* at queue head and ACK’ed

26

Long example with three nodes (messages at

first and third) and totally crazy message delays.

Totally-Ordered Multicast

• Multicast messages + local timestamp-ordered queue
• Multicasts an ACK to all other processes
• Process only if *both* at queue head and ACK’ed

27

Totally-Ordered Multicast

• Multicast messages + local timestamp-ordered queue
• Multicasts an ACK to all other processes
• Process only if *both* at queue head and ACK’ed

28

Totally-Ordered Multicast

• Multicast messages + local timestamp-ordered queue
• Multicasts an ACK to all other processes
• Process only if *both* at queue head and ACK’ed

29

Totally-Ordered Multicast

• Multicast messages + local timestamp-ordered queue
• Multicasts an ACK to all other processes
• Process only if *both* at queue head and ACK’ed

30

Totally-Ordered Multicast

• Multicast messages + local timestamp-ordered queue
• Multicasts an ACK to all other processes
• Process only if *both* at queue head and ACK’ed

31

Totally-Ordered Multicast

• Multicast messages + local timestamp-ordered queue
• Multicasts an ACK to all other processes
• Process only if *both* at queue head and ACK’ed

32

Totally-Ordered Multicast

• Multicast messages + local timestamp-ordered queue
• Multicasts an ACK to all other processes
• Process only if *both* at queue head and ACK’ed

33

Totally-Ordered Multicast

• Multicast messages + local timestamp-ordered queue
• Multicasts an ACK to all other processes
• Process only if *both* at queue head and ACK’ed

34

Totally-Ordered Multicast

• Multicast messages + local timestamp-ordered queue
• Multicasts an ACK to all other processes
• Process only if *both* at queue head and ACK’ed

35

Totally-Ordered Multicast

• Multicast messages + local timestamp-ordered queue
• Multicasts an ACK to all other processes
• Process only if *both* at queue head and ACK’ed

36

Totally-Ordered Multicast

• Multicast messages + local timestamp-ordered queue
• Multicasts an ACK to all other processes
• Process only if *both* at queue head and ACK’ed

37

Totally-Ordered Multicast

• Multicast messages + local timestamp-ordered queue
• Multicasts an ACK to all other processes
• Process only if *both* at queue head and ACK’ed

38

Totally-Ordered Multicast

• Multicast messages + local timestamp-ordered queue
• Multicasts an ACK to all other processes
• Process only if *both* at queue head and ACK’ed

39

Totally-Ordered Multicast

• Multicast messages + local timestamp-ordered queue
• Multicasts an ACK to all other processes
• Process only if *both* at queue head and ACK’ed

40

Totally-Ordered Multicast

• Multicast messages + local timestamp-ordered queue
• Multicasts an ACK to all other processes
• Process only if *both* at queue head and ACK’ed

41

Totally-Ordered Multicast

• Multicast messages + local timestamp-ordered queue
• Multicasts an ACK to all other processes
• Process only if *both* at queue head and ACK’ed

42

Totally-Ordered Multicast

• Multicast messages + local timestamp-ordered queue
• Multicasts an ACK to all other processes
• Process only if *both* at queue head and ACK’ed

43

Totally-Ordered Multicast

• Multicast messages + local timestamp-ordered queue
• Multicasts an ACK to all other processes
• Process only if *both* at queue head and ACK’ed

44

Totally-Ordered Multicast

• Multicast messages + local timestamp-ordered queue
• Multicasts an ACK to all other processes
• Process only if *both* at queue head and ACK’ed

45

Totally-Ordered Multicast: Summary

• Lamport Details (cont):
• Local queue ordered according to timestamp.
• The receiver multicasts an ACK to all other processes.
• Wait unti head of queue and ack’ed by all participants

• Why does this work?
• Key observation: by getting an ACK, we must have

received all prior messages from this node
• If that node had messages from before ACK, queue

order will ensure correctness.
• If that node has messages after ACK, their timestamp

must be larger than the timestamp of the ACK
• All processes will eventually have the same copy of

the local queue → consistent global ordering.
46

Goal of Today's Lecture

Centralized Mutual Exclusion
Bully Leader Election
Decentralized Mutual Exclusion
Totally-Ordered Multicast
Lamport Mutual Exclusion
Ricart & Agrawala Mutual Exclusion
Token Ring Mutual Exclusion

47

Understand trade-offs of main algorithms:

Lamport Mutual Exclusion (1)
• Based on Lamport TO-multicast
• ACK only to requestor (fewer messages)
• Release after finished (additional message)

48

Here’s the previous example again (TO Multicast):

49

Lamport Mutual Exclusion (2)
• Based on Lamport TO-multicast ⇒ Simplified!
• ACK only to requestor
• Release after finished

Here’s the example with Lamport Mutual Exclusion:

More Details: Lamport Mutual Exclusion
• Every process maintains a queue of pending requests for

entering critical section in order. The queues are ordered
by virtual time stamps derived from Lamport timestamps
• For any events e, e' such that e → e' (causality ordering), T(e) <

T(e')
• For any distinct events e, e', T(e) != T(e')

• When node i wants to enter C.S., it sends time-stamped
request to all other nodes (including itself)
• Wait for replies from all other nodes.
• If own request is at the head of its queue and all replies have

been received, enter C.S.
• Upon exiting C.S., remove its request from the queue and send

a release message to every process.

50

• Other nodes:
• After receiving a request, enter the request in its own

request queue (ordered by time stamps) and reply with
a time stamp.
• This reply is unicast unlike the Lamport totally

order multicast example. Why?
• Only the requester needs to know the message is ready

to commit.
• Release messages are broadcast to let others to move

on
• After receiving release message, remove the

corresponding request from its own request queue.
• If own request is at the head of its queue and all

replies have been received, enter C.S.

51

More Details: Lamport Mutual Exclusion

• Correctness
• When process x generates request with time stamp Tx, and it

has received replies from all y in Nx, then its Q contains all
requests with time stamps <= Tx

• Performance
• Process i sends n-1 request messages
• Process i receives n-1 reply messages
• Process i sends n-1 release messages

• Issues
• What if node fails?
• Performance compared to centralized
• What about message reordering?

52

Lamport Mutual Exclusion: Summary

Goal of Today's Lecture

Centralized Mutual Exclusion
Bully Leader Election
Decentralized Mutual Exclusion
Totally-Ordered Multicast
Lamport Mutual Exclusion
Ricart & Agrawala Mutual Exclusion
Token Ring Mutual Exclusion

53

Understand trade-offs of main algorithms:

Ricart & Agrawala Mutex

• Also relies on Lamport totally ordered clocks.

• When node i wants to enter C.S., it sends
time-stamped request to all other nodes. These
other nodes reply (eventually). When i receives
n-1 replies, then can enter C.S.

• Trick: Node j having earlier request doesn't reply
to i until after it has completed its C.S.

54

Ricart & Agrawala Mutex

• Two processes (0 and 2) want to access a
shared resource at the same moment.

55

Ricart & Agrawala Mutex

• Process 0 has the lowest timestamp, so it wins.

56

Ricart & Agrawala Mutex

• When process 0 is done, it sends an OK also, so
2 can now go ahead.

57

Ricart & Agrawala Mutex (1)
Optimization trick: Node j having earlier request
doesn't reply to i until after it has completed its C.S.

58

Here’s the previous example again with Lamport Mutual Exclusion:

59

Here’s the example with Ricard and Agrawala

Ricart & Agrawala Mutex (2)
Optimization trick: Node j having earlier request
doesn't reply to i until after it has completed its C.S.

Three different cases:
1.If the receiver is not accessing the resource and does not

want to access it, it sends back an OK message to the
sender.

2.If the receiver already has access to the resource, it simply
does not reply. Instead, it queues the request.

3.If the receiver wants to access the resource as well but has
not yet done so, it compares the timestamp of the incoming
message with the one contained in the message that it has
sent everyone. The lowest one wins.

60

Ricart & Agrawala Mutex: Recap

• Correctness

• Performance

• Issues

61

Ricart & Agrawala: Summary

 Why correct? (Hint proof by contradiction)

• Look at nodes A & B. Suppose both are allowed to be in
their critical sections at same time.
• A must have sent message (Request, A, Ta) & gotten reply

(Reply, A).
• B must have sent message (Request, B, Tb) & gotten reply

(Reply, B).
• Case 1: One received request before other sent request.

• E.g., B received (Request, A, Ta) before sending (Request, B,
Tb). Then would have Ta < Tb. A would not have replied until
after leaving its C.S.

• Case 2: Both sent requests before receiving others
request.
• But still, Ta & Tb must be ordered. Suppose Ta < Tb. Then A

would not sent reply to B until after leaving its C.S.

62

Ricart & Agrawala: Correctness

• Cannot have cycle where each node waiting for
some other

• Consider two-node case: Nodes A & B are causing
each other to deadlock
• This would result if A deferred reply to B & B deferred

reply to A, but this would require both Ta < Tb & Tb < Ta

• For general case, would have set of nodes A, B,
C, ..., Z, such that A is holding deferred reply to B,
B to C, ... Y to Z, and Z to A.This would require Ta
< Tb < ... < Tz < Ta, which is not possible

63

Ricart & Agrawala: Deadlock Free

• If node makes request, it will be granted
eventually

• Claim: If node A makes a request with time stamp
Ta, then eventually, all nodes will have their local
clocks > Ta

• Justification: From the request onward, every
message A sends will have time stamp > Ta
• All nodes will update their local clocks upon receiving

those messages.
• So, eventually, A's request will have a lower time

stamp than any other node's request, and it will be
granted.

64

Ricart & Agrawala: Starvation Free

• Correctness
• Case-based argument
• Deadlock free
• Starvation free

• Performance
• Each cycle involves 2(n-1) messages

• n-1 requests by I
• n-1 replies to I

• Issues
• What if node fails?

Performance compared to centralized

65

Ricart & Agrawala: Summary

Goal of Today's Lecture

Centralized Mutual Exclusion
Bully Leader Election
Decentralized Mutual Exclusion
Totally-Ordered Multicast
Lamport Mutual Exclusion
Ricart & Agrawala Mutual Exclusion
Token Ring Mutual Exclusion

66

Understand trade-offs of main algorithms:

A Token Ring Algorithm

• Organize the processes involved into a logical ring
• One token at any time → passed from node to

node along ring

67

A Token Ring Algorithm

• Correctness:
• Clearly safe: Only one process can hold token

• Fairness:
• Will pass around ring at most once before getting

access.
• Performance:

• Each cycle requires between 1 - ∞ messages
• Latency of protocol between 0 & n-1

• Issues
• Lost token

68

A Comparison of the 5 Mutex Algorithms

• Which one would you choose?
• What happens with crashes?

69

Algorithm # Messages per
cycle

Delay before
entry

Problems

Centralized 3 2 Coordinator crash

Decentralized 2 m k + m, k≥1 2m Starvation

Lamport 3 (N-1) 2 (N-1) Crash of any
process, inefficient

Ricart & Agrawala 2 (N-1) 2 (N-1) Crash of any
process

Token ring 1 to infinite 0 to (N-1) Lost token,
process crash

Summary

• Lamport algorithm demonstrates how distributed
processes can maintain consistent replicas of a
data structure (the priority queue).

• Ricart & Agrawala's algorithm demonstrate utility
of logical clocks.

• Centralized & ring based algorithms have much
lower message counts

• None of these algorithms can tolerate failed
processes or dropped messages.

70

