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15-440 Distributed Systems

Lecture 07 – Distributed File Systems (1)
Tuesday, September 18th, 2018



Logistics Updates

• P1 – Released 9/14, Checkpoint 9/25
• Recitation, Wednesday 9/19 (6pm – 9pm) 

• HW1 Due 9/23

• As always, check for due date on the web / writeup
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Outline

• Why Distributed File Systems?

• Basic mechanisms for building DFSs
• Using NFS and AFS as examples

• Design choices and their implications
• Caching
• Consistency
• Naming
• Authentication and Access Control
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andrew.cmu.edu

• Let�s start with a familiar example:  andrew

10,000s
of 
machines

10,000s
of 
people

Goal:  Have a consistent namespace for files across 
computers. Allow any authorized user to access their 
files from any computer

Disk Disk Disk

Terabytes of 
disk



Why DFSs are Useful

• Data sharing among multiple users
• User mobility
• Location transparency
• Backups and centralized management
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What Distributed File Systems 
Provide

• Access to data stored at servers using file system 
interfaces

• What are the file system interfaces?
• Open a file, check status of a file, close a file
• Read data from a file
• Write data to a file
• Lock a file or part of a file
• List files in a directory, create/delete a directory
• Delete a file, rename a file, add a symlink to a file
• etc
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Challenges

• Remember our initial list of challenges...
• Heterogeneity (lots of different computers & 

users)
• Scale (10s of thousands of users!)
• Security (my files!  hands off!)
• Failures
• Concurrency
• oh no...  we�ve got �em all.

How can we build this??



Just as important:  non-challenges

• Geographic distance and high latency

• Andrew and AFS target the campus 
network, not the wide-area

• NFSv4 (latest version) was meant to work 
better across wide-area networks



Prioritized goals? / Assumptions

• Often very useful to have an explicit list of prioritized goals.  
Distributed filesystems almost always involve trade-offs

• Scale, scale, scale
• User-centric workloads... how do users use files (vs. big 

programs?)
• Most files are personally owned
• Not too much concurrent access;  user usually only at one or a few 

machines at a time
• Sequential access is common;  reads much more common that 

writes
• There is locality of reference (if you�ve edited a file recently, 

you�re likely to edit again)
• Turns out, if you change the workload assumptions the design 

parameters change! 



Outline

• Why Distributed File Systems?

• Basic mechanisms for building DFSs
• Using NFS and AFS as examples

• Design choices and their implications
• Caching
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Components in a DFS 
Implementation
• Client side:

• What has to happen to enable applications to access a 
remote file the same way a local file is accessed?

• Accessing remote files in the same way as accessing 
local files à requires kernel support

• Communication layer:
• How are requests sent to server?

• Server side:
• How are requests from clients serviced?
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VFS Interception
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A Simple Approach

• Use RPC to forward every filesystem operation to 
the server
• Server serializes all accesses, performs them, and 

sends back result.
• Same behavior as if both programs were running 

on the same local filesystem!
• What about failures?

• Consider file descriptors and how they are used
• What happens when servers fail?
• What about client failures?



NFS V2 Design

• “Dumb”, “Stateless” servers w/ smart clients
• Portable across different OSes
• Low implementation cost
• Small number of clients
• Single administrative domain

16



Some NFS V2 RPC Calls

• NFS RPCs using XDR over, e.g., TCP/IP

• fhandle: 32-byte opaque data (64-byte in v3)
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Proc. Input args Results
LOOKUP dirfh, name status, fhandle, fattr
READ fhandle, offset, count status, fattr, data

CREATE dirfh, name, fattr status, fhandle, fattr
WRITE fhandle, offset, count, 

data
status, fattr



Remote Procedure Calls in NFS

• Reading data from a file in NFS version 3
• Lookup takes directory+name and return filehandle
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Server Side Example:
mountd and nfsd

• mountd: provides the initial file handle for the exported 
directory
• Client issues nfs_mount request to mountd
• mountd checks if the pathname is a directory and if the 

directory should be exported to the client

• nfsd: answers the RPC calls, gets reply from local file 
system, and sends reply via RPC
• Usually listening at port 2049

• Both mountd and nfsd use underlying RPC 
implementation
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NFS V2 Operations

• V2: 
• NULL, GETATTR, SETATTR
• LOOKUP, READLINK, READ

• CREATE, WRITE, REMOVE, RENAME
• LINK, SYMLINK

• READIR, MKDIR, RMDIR

• STATFS (get file system attributes)
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A Simple Approach

• Use RPC to forward every filesystem operation to the 
server
• Server serializes all accesses, performs them, and sends back 

result.
• Great:  Same behavior as if both programs were running 

on the same local filesystem!
• Bad:  Performance can stink.  Latency of access to remote 

server often much higher than to local memory.
• In Andrew context:  server would get hammered!

Lesson 1:  Needing to hit the server for every detail impairs 
performance and scalability.

Question 1:  How can we avoid going to the server for everything?  
What can we avoid this for?  What do we lose in the process?



AFS Goals

• Global distributed file system
• “One AFS”, like “one Internet”

• Why would you want more than one?

• LARGE numbers of clients, servers
• 1000 machines could cache a single file,

• Most local, some (very) remote

• Goal: Minimize/eliminate work per client operation 
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AFS Assumptions

• Client machines have disks(!!)
• Can cache whole files over long periods

• Write/write and write/read sharing are rare
• Most files updated by one user, on one machine

• Client machines are un-trusted
• Must prove they act for a specific user

• Secure RPC layer
• Anonymous “system:anyuser”
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AFS Cell/Volume Architecture

• Cells correspond to administrative groups
• /afs/andrew.cmu.edu is a cell

• Cells are broken into volumes (miniature file 
systems)
• One user's files, project source tree, ...
• Typically stored on one server
• Unit of disk quota administration, backup

• Client machine has cell-server database
• protection server handles authentication
• volume location server maps volumes to servers
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Outline

• Why Distributed File Systems?
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Topic 1: Client-Side Caching

• Huge parts of systems rely on two solutions to 
every problem:
1. �All problems in computer science can be solved by 

adding another level of indirection… But that will 
usually create another problem.� -- David Wheeler

2. Cache it!



Client-Side Caching

• So, uh, what do we cache?
• Read-only file data and directory data à easy
• Data written by the client machine à when is data 

written to the server? What happens if the client 
machine goes down?

• Data that is written by other machines à how to know 
that the data has changed?  How to ensure data 
consistency?

• Is there any pre-fetching?
• And if we cache... doesn�t that risk making things 

inconsistent?
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Server cache
F1:V1F1:V2

Use of caching to reduce network 
load
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Read (RPC)
Return (Data)

Write (RPC)

ACK

Client

cache

Client

cache

F1:V1

F1:V2

read(f1)

write(f1)

®V1
read(f1)®V1
read(f1)®V1

®OK

read(f1)®V1 X

read(f1)®V2

Crash!Crash!



Failures

• Server crashes

• Data in memory but not disk  à lost

• So... what if client does

• seek() ;  /* SERVER CRASH */; read()

• If server maintains file position, this will fail.  Ditto for 

open(), read()

• Lost messages:  what if we lose 

acknowledgement for delete(�foo�)
• And in the meantime, another client created a new file 

called foo?

• Client crashes

• Might lose data in client cache



Client Caching in NFS v2

• Cache both clean and dirty file data and file attributes

• File attributes in the client cache expire after 60 

seconds (file data doesn’t expire)

• File data is checked against the modified-time in file 

attributes (which could be a cached copy)

• Changes made on one machine can take up to 60 seconds 

to be reflected on another machine

• Dirty data are buffered on the client machine until file 

close or up to 30 seconds

• If the machine crashes before then, the changes are lost
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Implication of NFS v2 Client 
Caching

• Advantage:  No network traffic if 
open/read/write/close can be done locally. 

• But…. Data consistency guarantee is very poor
• Simply unacceptable for some distributed applications
• Productivity apps tend to tolerate such loose 

consistency
• Generally clients do not cache data on local disks
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NFS�s Failure Handling –
Stateless Server

• Files are state, but...
• Server exports files without creating extra state

• No list of “who has this file open” (permission check on each 
operation on open file!)

• No “pending transactions” across crash
• Crash recovery is “fast”

• Reboot, let clients figure out what happened
• State stashed elsewhere

• Separate MOUNT protocol
• Separate NLM locking protocol in NFSv4

• Stateless protocol:  requests specify exact state.  
read() à read( [position]).  no seek on server.



NFS�s Failure Handling

• Operations are idempotent
• How can we ensure this?  Unique IDs on files/directories.  

It�s not delete(�foo�), it�s delete(1337f00f), where that ID 
won�t be reused.

• Not perfect à e.g., mkdir
• Write-through caching:  When file is closed, all 

modified blocks sent to server.  close() does not 
return until bytes safely stored.
• Close failures? 

• retry until things get through to the server
• return failure to client

• Most client apps can�t handle failure of close() call. 
• Usual option:  hang for a long time trying to contact server



NFS Results

• NFS provides transparent, remote file access
• Simple, portable, really popular

• (it�s gotten a little more complex over time, but...)
• Weak consistency semantics
• Requires hefty server resources to scale (write-

through, server queried for lots of operations)



Let�s look back at Andrew

• NFS gets us partway there, but
• Probably doesn�t handle scale (* - you can buy huge NFS 

appliances today that will, but they�re $$$-y).
• Is very sensitive to network latency

• How can we improve this?
• More aggressive caching (AFS caches on disk in addition to 

just in memory)
• Prefetching (on open,  AFS gets entire file from server, 

making later ops local & fast).
• Remember:  with traditional hard drives, large sequential 

reads are much faster than small random writes.  So 
easier to support (client a:  read whole file;  client B: read 
whole file) than having them alternate.  Improves 
scalability, particularly if client is going to read whole file 
anyway eventually.



Client Caching in AFS

• Callbacks!  Clients register with server that they 
have a copy of file;
• Server tells them: �Invalidate!� if the file changes
• This trades state for improved consistency

• What if server crashes? Lose all callback state!
• Reconstruct callback information from client: go ask 

everyone “who has which files cached?”
• What if client crashes?

• Must revalidate any cached content it uses since it may 
have missed callback



AFS v2 RPC Procedures

• Procedures that are not in NFS
• Fetch: return status and optionally data of a file or 

directory, and place a callback on it
• RemoveCallBack: specify a file that the client has 

flushed from the local machine
• BreakCallBack: from server to client, revoke the 

callback on a file or directory
• What should the client do if a callback is revoked?

• Store: store the status and optionally data of a file
• Rest are similar to NFS calls
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Topic 2: File Access Consistency

• In UNIX local file system, concurrent file reads 
and writes have “sequential” consistency 
semantics
• Each file read/write from user-level app is an atomic 

operation
• The kernel locks the file vnode

• Each file write is immediately visible to all file readers
• Neither NFS nor AFS provides such concurrency 

control
• NFS: “sometime within 30 seconds”
• AFS: session semantics for consistency
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Session Semantics in AFS v2

• What it means:
• A file write is visible to processes on the same box 

immediately, but not visible to processes on other 
machines until the file is closed

• When a file is closed, changes are visible to new 
opens, but are not visible to “old” opens

• All other file operations are visible everywhere 
immediately

• Implementation
• Dirty data are buffered at the client machine until file 

close, then flushed back to server, which leads the 
server to send “break callback” to other clients
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AFS Write Policy

• Writeback cache

• Opposite of NFS “every write is sacred”

• Store chunk back to server

• When cache overflows

• On last user close()

• ...or don't (if client machine crashes)

• Is writeback crazy?

• Write conflicts “assumed rare”

• Who wants to see a half-written file?
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AFS: Cache Consistency Timeline
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Source: 
Remzi, OS Book, “AFS” 



Results for AFS

• Lower server load than NFS

• More files cached on clients

• Callbacks:  server not busy if files are read-only (common 

case)

• But maybe slower:  Access from local disk is much 

slower than from another machine�s memory over 

LAN

• For both:

• Central server is bottleneck:  all reads and writes hit it at 

least once;

• is a single point of failure.

• is costly to make them fast, beefy, and reliable servers.



Today�s bits

• Distributed filesystems almost always involve a 
tradeoff:  consistency, performance, scalability.

• We have learned a lot since NFS and AFS (and 
can implement faster, etc.), but the general 
lessons holds.  Especially in the wide-area.

• We’ll see a related tradeoffs, also involving 
consistency, in a while:  the CAP tradeoff.  
Consistency, Availability, Partition-resilience.



More bits

• Client-side caching is a fundamental technique to 
improve scalability and performance
• But raises important questions of cache consistency

• Timeouts and callbacks are common methods for 
providing (some forms of) consistency.

• AFS picked close-to-open consistency as a good 
balance of usability (the model seems intuitive to 
users), performance, etc.
• AFS authors argued that apps with highly concurrent, 

shared access, like databases, needed a different 
model



Questions?
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Topic 3: Name-Space 

Construction and Organization

• NFS: per-client linkage

• Server: export /root/fs1/

• Client: mount server:/root/fs1 /fs1

• AFS: global name space

• Name space is organized into Volumes

• Global directory /afs; 

• /afs/cs.wisc.edu/vol1/…; /afs/cs.stanford.edu/vol1/…

• Each file is identified as fid = <vol_id, vnode #, unique 

identifier>

• All AFS servers keep a copy of “volume location database”, 

which is a table of vol_idà server_ip mappings
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Implications on Location 
Transparency

• NFS: no transparency
• If a directory is moved from one server to another, client 

must remount

• AFS: transparency
• If a volume is moved from one server to another, only 

the volume location database on the servers needs to 
be updated

47



Naming in NFS (1)

• Figure 11-11. Mounting (part of) a remote file 
system in NFS.

48



Naming in NFS (2)

49



Topic 4: User Authentication and 
Access Control

• User X logs onto workstation A, wants to access files 
on server B
• How does A tell B who X is?
• Should B believe A?

• Choices made in NFS V2
• All servers and all client workstations share the same <uid, 

gid> name space à B send X’s <uid,gid> to A
• Problem: root access on any client workstation can lead 

to creation of users of arbitrary <uid, gid>
• Server believes client workstation unconditionally

• Problem: if any client workstation is broken into, the 
protection of data on the server is lost;

• <uid, gid> sent in clear-text over wire à request packets 
can be faked easily
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User Authentication (cont’d)

• How do we fix the problems in NFS v2
• Hack 1: root remapping à strange behavior
• Hack 2: UID remapping à no user mobility
• Real Solution: use a centralized 

Authentication/Authorization/Access-control (AAA) 
system
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A Better AAA System: Kerberos

• Basic idea: shared secrets
• User proves to KDC who he is; KDC generates shared 

secret between client and file server
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client

ticket server
generates S

“Need to access fs”

Kclient[S
] file serverK

fs[S]

S: specific to {client,fs} pair; 
“short-term session-key”; expiration time (e.g. 8 hours)

KDC

encrypt S with
client’s key



Failure Recovery in AFS & NFS

• What if the file server fails?
• What if the client fails?
• What if both the server and the client fail?
• Network partition

• How to detect it? How to recover from it?
• Is there anyway to ensure absolute consistency in the 

presence of network partition?
• Reads
• Writes

• What if all three fail: network partition, server, 
client?

64



Key to Simple Failure Recovery

• Try not to keep any state on the server
• If you must keep some state on the server

• Understand why and what state the server is keeping
• Understand the worst case scenario of no state on the 

server and see if there are still ways to meet the 
correctness goals

• Revert to this worst case in each combination of failure 
cases
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NFS V3 and V4 Operations

• V3 added:
• READDIRPLUS, COMMIT (server cache!)
• FSSTAT, FSINFO, PATHCONF

• V4 added:
• COMPOUND (bundle operations)
• LOCK (server becomes more stateful!)
• PUTROOTFH, PUTPUBFH (no separate MOUNT)
• Better security and authentication
• Very different than V2/V3 à stateful
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Operator Batching

• Should each client/server interaction accomplish 
one file system operation or multiple operations?
• Advantage of batched operations?
• How to define batched operations

• Examples of Batched Operators
• NFS v3: 

• READDIRPLUS
• NFS v4:

• COMPOUND RPC calls
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Remote Procedure Calls in NFS

• (a) Reading data from a file in NFS version 3
• (b) Reading data using a compound procedure in 

version 4.
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