
Distributed Systems

15-440/640

Fall 2018

5 – Time Synchronization

Readings: Tanenbaum Book, Chapters 6.1 and 6.2.

Announcements

Who is taking legible notes and is willing to share them?
There is a student in our class who needs a copy of the class notes. We are
looking for a volunteer peer notetaker. If you are interested in
volunteering, please see me after class.

P0 due on Thursday.

HW1 will be released tomorrow (Wednesday).

Daniel’s OH today will start at 1pm (instead of 12.30).

2

Today's Lecture

• Need for time Synchronization

• Basic Time Synchronization Techniques

• Lamport Clocks

• Vector Clocks

• Time Synchronization in 2018

3

Why Global Timing?

• Suppose there were a globally consistent time
standard

• Would be handy
• Who got last seat on airplane?

• Who submitted final auction bid before deadline?

• When exactly was a message sent (indoor positioning)?

• Did defense move before snap?

4

Impact of Clock Synchronization

• When each machine has its own clock, an event that
occurred after another event may nevertheless be
assigned an earlier time.

5

How does make know which modules need recompiling?

Replicated Database Update

• Updating a replicated database and leaving it in
an inconsistent state

6
Examples where update order matters?

Time Standards

• UT1 (Universal Time)
• Based on astronomical observations
• “Greenwich Mean Time”

• TAI (Temps Atomique International)
• Started Jan 1, 1958
• Each second is 9,192,631,770 cycles of radiation emitted by

Cesium atom
• Has diverged from UT1 due to slowing of earth’s rotation

• UTC (Temps universel coordonné)
• TAI + leap seconds to be within 0.9s of UT1
• Currently 27 leap seconds
• Most recent: Dec 31, 2016

7

Comparing Time Standards
U

T1
 −

 U
TC

8

Coordinated Universal Time (UTC)

• Is broadcast from radio stations on land and satellite (e.g.
GPS)

• Computers with receivers can synchronize their clocks
with these timing signals

• Signals from land-based stations are accurate to about
0.1-10 millisecond

• Signals from GPS are accurate to about 1 microsecond
• Why can't we put GPS receivers on all our computers?

9

Clocks in a Distributed System

• Computer clocks are not generally in perfect agreement
• Skew: the difference between the times on two clocks (at any instant)

• Computer clocks are subject to clock drift (they count time at different
rates)

• Clock drift rate: the difference per unit of time from some ideal reference
clock

• Ordinary quartz clocks drift by about 1 sec in 11-12 days. (10-6 secs/sec).
• High precision quartz clocks drift rate is about 10-7 or 10-8 secs/sec

10

Fast and Slow Clocks

• The relation between clock time and UTC
when clocks tick at different rates.

11

How Fast Do Clocks Drift in Real DS?

12

G
eng, Y

ilong, et al. "E
xploiting a natural

netw
ork effect for scalable, fine-grained clock

synchronization." N
S

D
I, 2018.

Timestamping datacenter network
packets: need nanosecond accuracy!

• After 1min: errors almost 2 milliseconds
• Still assumes constant temperature

Today's Lecture

• Need for time Synchronization

• Basic Time Synchronization Techniques

• Lamport Clocks

• Vector Clocks

• Time Synchronization in 2018

13

Perfect networks

• Messages always arrive, with propagation delay
exactly d

• Sender sends time T in a message
• Receiver sets clock to T+d

• Synchronization is exact

14

Synchronous networks

• Messages always arrive, with propagation delay at
most D

• Sender sends time T in a message
• Receiver sets clock to T + D/2

• Synchronization error is at most D/2

15

Synchronization in the real world

• Real networks are asynchronous
• Message delays are arbitrary

• Real networks are unreliable
• Messages don’t always arrive

16

Today's Lecture

• Need for time Synchronization

• Basic Time Synchronization Techniques
• Christian’s Time Sync

• Lamport Clocks
• Vector Clocks
• Time Synchronization in 2018

17

Cristian’s Time Sync

mr

mt

p
Time
server,S

• A time server S receives signals from a UTC source
• Process p requests time in mr and receives t in mt from S
• p sets its clock to t + RTT/2
• Accuracy ± (RTT/2 - min) :

• because the earliest time S puts t in message mt is min after p sent mr.
• the latest time was min before mt arrived at p
• the time by S’s clock when mt arrives is in the range [t+min, t + RTT - min]

RTT is the round trip time recorded by p
min is an estimated minimum one way delay

18

Today's Lecture

• Need for time Synchronization

• Basic Time Synchronization Techniques
• Christian’s Time Sync
• Berkeley Algorithm

• Lamport Clocks
• Vector Clocks
• Time Synchronization in 2018

19

Berkeley algorithm

• Cristian’s algorithm -
• a single time server might fail
• ⇒ group of synchronized servers?
• ⇒ how to deal with faulty servers?

•
20

Problems with Christian’s Algorithm?

• Berkeley algorithm (also 1989)
• An algorithm for internal synchronization of a group of computers
• A master polls to collect clock values from the others (slaves)
• The master uses round trip times to estimate the slaves’ clock values
• It takes an average (eliminating any above average round trip time or with

faulty clocks)
• It sends the required adjustment to the slaves (better than sending the

time which depends on the round trip time)
• Measurements

• 15 computers, clock synchronization 20-25 millisecs drift rate < 2x10-5

• If master fails, can elect a new master to take over (not in bounded time)

The Berkeley Algorithm (1)
• The time daemon asks

all the other machines
for their clock values.

21

The Berkeley Algorithm (2)

• The machines
answer.

22

The Berkeley Algorithm (3)
• The time daemon tells

everyone how to
adjust their clock.

23

Today's Lecture

• Need for time Synchronization

• Basic Time Synchronization Techniques
• Christian’s Time Sync
• Berkeley Algorithm
• NTP

• Lamport Clocks
• Vector Clocks
• Time Synchronization in 2018

24

Network Time Protocol (NTP)

1

2

3

2

3 3

• A time service for the Internet - synchronizes clients to UTC
Reliability from redundant paths, scalable, authenticates time sources

Primary servers are
connected to UTC
sources Secondary servers are

synchronized to primary
servers

Synchronization
subnet - lowest
level servers in
users’ computers

25

The Network Time Protocol (NTP)

• Uses a hierarchy of time servers
• Class 1 servers have highly-accurate clocks

• connected directly to atomic clocks, etc.
• Class 2 servers get time from only Class 1 and Class 2

servers
• Class 3 servers get time from any server

• Synchronization similar to Cristian’s alg.
• Modified to use multiple one-way messages instead of

immediate round-trip
• Accuracy: Local ~1ms, Global ~10ms

26

27

Udel Master Time Facility (MTF)
(since January 2000)

Spectracom 8170 WWVB Receiver

Spectracom 8170 WWVB Receiver

Spectracom 8183 GPS Receiver

Spectracom 8183 GPS Receiver

Hewlett Packard 105A Quartz
Frequency Standard

Hewlett Packard 5061A Cesium Beam
Frequency Standard

Inventor of NTPv0 (today v4): David Mills (http://www.eecis.udel.edu/~mills)

NTP Protocol

• All messages use UDP
• Each message bears timestamps of recent events:

• Local times of Send and Receive of previous message
• Local times of Send of current message

• Recipient notes the time of receipt T3
• (we have T0, T1, T2, T3)

28

T3

T2T1

T0

Server

Client

Tim
e

m m'

Tim
e

Transport protocol?

Accuracy of NTP
• Timestamps

• t0 is the client's timestamp of the request packet transmission,
• t1 is the server's timestamp of the request packet reception,
• t2 is the server's timestamp of the response packet transmission and
• t3 is the client's timestamp of the response packet reception.

• RTT = wait_time_client – server_proc_time
 = (t3-t0) – (t2-t1)

• Offset = t2 - t3 + RTT/2
= ((t1-t0) + (t2-t3))/2
= ((offset + delay) + (offset – delay))/2

• NTP servers filter pairs <rtti, offseti>, estimating reliability
from variation, allowing them to select peers

• 8 measurements ⇒ take min packet delay

29

NTP calls clock
skew “offset”

How To Change Time

• Can’t just change time
• Why not?

• Change the update rate for the clock
• Changes time in a more gradual fashion
• Prevents inconsistent local timestamps

30

Today's Lecture

• Need for time Synchronization

• Basic Time Synchronization Techniques

• Lamport Clocks

• Vector Clocks

• Time Synchronization in 2018

31

Logical time

• Capture just the “happens before” relationship
between events
• Discard the infinitesimal granularity of time
• Corresponds roughly to causality

32

Logical time and logical clocks (Lamport
1978)

• Events at three processes

33

Logical time and logical clocks [Lamport 1978]

• Instead of synchronizing clocks, event ordering can be used:
1. Two events occurred at same process pi (i = 1, 2, … N): then they

occurred in the order observed by pi.
Definition of: “→ i” (“happened before” i).

2. When a message, m, is sent between two processes: send(m)
happens before receive(m).

3. The “happened before” relation is transitive.

• The happened before relation is the relation of causal ordering
34

Logical time and logical clocks [Lamport 1978]

• a → b (at p1) c →d (at p2)
• b → c because of m1
• also d → f because of m2
• so: a → f

35

Logical time and logical clocks [Lamport 1978]

• Not all events are related by →
• Consider a and e (different processes and no chain of

messages to relate them)
• they are not related by → ; they are said to be concurrent
• written as a || e

36

Lamport’s algorithm

• Each process i keeps a local clock, Li
• Three rules:

1. At process i, increment Li before each event
2. To send a message m at process i, apply rule 1 and

then include the current local time in the message:
i.e., send(m,Li)

3. To receive a message (m,t) at process j, set Lj =
max(Lj,t) and then apply rule 1 before time-stamping
the receive event

• The global time L(e) of an event e is just its local
time

• For an event e at process i, L(e) = Li(e)

37

Lamport Clock (1)

• A logical clock is a monotonically increasing software counter
• It need not relate to a physical clock.

• Each process pi has a logical clock, Li which can be used to
apply logical timestamps to events

• Rule 1: Li is incremented by 1 before each event at process pi
• Rule 2:

• (a) when process pi sends message m, it piggybacks t = Li
• (b) when pj receives (m,t) it sets Lj := max(Lj, t) and applies rule 1 before

timestamping the event receive (m)

38

Lamport Clocks (2)

• Each of p1, p2, p3 has its logical clock initialised to zero,
• The clock values are those immediately after the event.
• E.g. 1 for a, 2 for b.

• For m1, 2 is piggybacked and c gets max(0,2)+1 = 3

39

Lamport Clocks (3)

• e →e’ implies L(e)<L(e’)

• The converse is not true, that is L(e)<L(e') does not
imply e →e’
• e.g. L(b) > L(e) but b || e

40

Lamport Clocks (4)

41

• Similar rules for concurrency
• L(e) = L(e’) implies e║e’ (for distinct e,e’)
• e║e’ does not imply L(e) = L(e’)
• i.e., Lamport clocks arbitrarily order some concurrent

events

Total-order Lamport clocks

• Many systems require a total-ordering of events,
not a partial-ordering

• Use Lamport’s algorithm, but break ties using the
process ID
• L(e) = M * Li(e) + i

• M = maximum number of processes
• i = process ID

42

Practice a few examples of total-order Lamport clocks at home!

Today's Lecture

• Need for time Synchronization

• Basic Time Synchronization Techniques

• Lamport Clocks

• Vector Clocks

• Time Synchronization in 2018

43

Vector Clocks

• Vector clocks overcome the shortcoming of
Lamport logical clocks
• L(e) < L(e’) does not imply e happened before e’

• Goal
• Want ordering that matches causality
• V(e) < V(e’) if and only if e → e’

• Method
• Label each event by vector V(e) [c1, c2 …, cn]

• ci = # events in process i that causally precede e

44

Vector Clock Algorithm

• Initially, all vectors [0,0,…,0]
• For event on process i, increment own ci
• Label message sent with local vector
• When process j receives message with vector

[d1, d2, …, dn]:
• Set local each local entry k to max(ck, dk)
• Increment value of cj

45

Vector Clocks

• At p1
• a occurs at (1,0,0); b occurs at (2,0,0)
• piggyback (2,0,0) on m1

• At p2 on receipt of m1 use max ((0,0,0), (2,0,0)) = (2, 0, 0) and
add 1 to own element = (2,1,0)

• Meaning of =, <=, max etc for vector timestamps
• compare elements pairwise 46

Vector Clocks

• Note that e → e’ implies V(e)<V(e’). The converse
is also true

• Can you see a pair of parallel events?
• c || e (parallel) because neither V(c) <= V(e) nor V(e) <= V(c)

47

Today's Lecture

• Need for time Synchronization

• Basic Time Synchronization Techniques

• Lamport Clocks

• Vector Clocks

• Time Synchronization in 2018

48

The State of Time Synchronization in 2018

Active Research Field

- With hardware support [DTP, SIGCOMM 2016]
- Exploit PHY-level (Ethernet) hop-by-hop

synchronization
- 25.6 nanosecond-accuracy (single hop)

- (Mostly) in software [HUYGENS, NSDI 2018]
- NIC timestamp support
- ML-based software filter
- 100 nanosecond-accuracy (within small datacenter)

49

Problem Observations in HUYGENS 1

Bidirectional probes ⇒ upper/lower bounds on clock delta

50

Proc. +
Prop. delay

Queueing
delay

Queueing
delay

???
Timestamp
errors

Very noisy! How to detect boundary?

Problem Observations in HUYGENS 2

Why not use statistical (ML) techniques to denoise?

51
What else can we do? Can DS ideas help?

Incorrectly
detects
boundary!

Key Idea:
Coded probes

52

=10ns <10ns >10ns

10ns 10ns 10ns time
Sender:

time
Receiver:

Today's Lecture

• Need for time Synchronization

• Basic Time Synchronization Techniques

• Lamport Clocks

• Vector Clocks

• Time Synchronization in 2018

53

Clock Sync Important Lessons

• Clocks on different systems will always behave
differently

• Skew and drift between clocks

• Time disagreement between machines can result in
undesirable behavior

• Two paths to solution: synchronize clocks or ensure
consistent clocks

• We will revisit this when we get to the Spanner lecture
• Basically, can we slow down the system to make

synchronizing clocks an effective solution
54

Clock Sync Important Lessons
• Clock synchronization

• Rely on a time-stamped network messages
• Estimate delay for message transmission
• Can synchronize to UTC or to local source
• Clocks never exactly synchronized
• Often inadequate for distributed systems
• Might need totally-ordered events
• Might need very high precision

• Logical Clocks
• Encode causality relationship
• Lamport clocks provide only one-way encoding
• Vector clocks provide exact causality information

55

