
Lecture 04 – Classical Synchronization
GO Style Concurrency

Thursday, September 6th, 2018

15-440 Distributed Systems

Logistics Updates

• P0 Released (Tuesday, Sept 4th)

• Due: (Sept 13th, 11:59pm EST)

• Recitation was on Wednesday, Sept 5th

• HW1 released next week (Sept 12)

• Due Sept 9/23 (*No Late Days*).

• As always, check for due date on the web / writeup

• Waitlists: everyone is enrolled, no more additions.

2

Today's Lecture Outline

• Concurrency Management - Synchronization

• Part I: Review of Classical Concurrency
• Concepts, Locks, Condition Variables,

• Part II: Concurrency Model in GO
• Quick review of yesterday’s recitation on GO Overview

For more details, look at the slides for recitation

3

Concurrency

• We will use concurrency concepts repeatedly
• Recap: Why is concurrency important/useful?

• Allows safe/multiplexed access to shared resources
• i.e. safe operation with multiple independent entities

• Single core CPUs to wide area distributed systems
• Why is sharing resources useful? Real life example?

4
With (some at least!)
Concurrency Control …or not!

Concurrency is key in DS

• Today, we start with threads on a single node
…. we will expand them to multiple machines
• Key assumption: ignore independent failures

• Code Concurrency: Terms (Ref: Dijkstra ‘65,’68)
• Critical Section: piece of code accessing a shared resource,

usually variables or data structures
• Race Condition: Multiple threads of execution enter CS at the

same time, update shared resource, leading to undesirable outcome
• Indeterminate Program: One or more Race Conditions, output of

program depending on ordering, non deterministic
• So, what is the solution?

• Mutual Exclusion!

5

Achieving Mutual Exclusion

• Mutual Exclusion: guarantee that only a single
thread/process enters a CS, avoiding races

• Desired Properties of Mutual Exclusion
• Mutual Exclusion (Correctness): single process in CS at one time
• Progress (Efficiency): Processes don’t wait for available

resources, or no spin-locks => no wasted resources
• Bounded Waiting (Fairness): No process waits for ever for a

resource, i.e. a notion of fairness

• Trivial solution if we didn’t care about fairness! What is it?
• Can you give an example of concurrent access to files in an OS

which does not lead to concurrency problems or need mutex?

6

Achieving Mutual Exclusion

• Mutual Exclusion: Usually need some H/W support
• Test-and-Set instruction (atomic testing/setting of a value)

7

TS (<memloc>)
{ if <memloc>==1

{
<memloc>=0;
return 1;

}
else

return 0;
}

Note: Atomic/Non-interruptable

We can use Test-and-Set to
implement Mutex

• Build more complex primitives around this H/W

// Do this before entering CS
Acquire_Mutex(<mutex>)
{

while(!TS(<mutex>))
}

// After Exiting CS
Release_Mutex(<mutex>)
{

<mutex> = 1
}

{CS: Critical Section of Code}

Classical Model of Concurrency

• Threads running within an address space
• Private/Shared state => primitive to access shared state
• E.g. Semaphores: Integer variable ‘x’ with 2 operations

8

x.P():
while (x == 0) wait;
x–

x.V():
x++

Note: `P’ and `V’ operations are
Atomic, not interruptable

What is a Binary Semaphore then?

// binary Semaphore = Mutex
x=1; Unlocked, Resource Available
x=0; Locked, Must wait for resource

Semaphones to Create a FIFO

• Idea: Want to create (thread safe) FIFO queue
• Similar to GO channel, without a capacity limit

9

b.Init():
Initialize values

b.Insert(x)
Insert item into queue

b.Remove()
Block until queue not empty (if necessary)
Return element at head of queue

b.Flush():
Clear queue

// Assume we have a sequential implementation of a FIFO buffer
// b represents a structure with fields

sb: Sequential buffer implementation
mutex: Mutual exclusion lock

• What do we need to do next? Wrap with Mutex

Thread Safe FIFO Queue

10

b.Init():
b.sb = NewBuf()
b.mutex = 1

b.Insert(x):
b.mutex.lock()
b.sb.Insert(x)
b.mutex.unlock()

b.Remove():
b.mutex.lock()
x = b.sb.Remove()
b.mutex.unlock()
return x

b.Flush():
b.mutex.lock()
b.sb.Flush()
b.mutex.unlock()

Is this correct?
No, what if Remove is called
and the buffer is empty?

.

.

.

.
b.Remove():
retry:
b.mutex.lock()
if !(b.sb.len() > 0) {

b.mutex.unlock()
goto retry

}
.
.
.

Potential Fix. Does this do it?

No, not really. This is a spin-lock. Wastes resources and
unclear if a Insert(x) will ever make progress.
This is inefficient and can be a potential LIVELOCK.

Thread Safe FIFO Queue

11

b.Init():
b.sb = NewBuf()
b.mutex = 1
b.items = 0

b.Insert(x):
b.mutex.lock()
b.sb.Insert(x)
b.mutex.unlock()
b.items.V()

b.Remove():
b.items.P()
b.mutex.lock()
x = b.sb.Remove()
b.mutex.unlock()
return x

b.Flush():
b.mutex.lock()
b.sb.Flush()
b.items = 0
b.mutex.unlock()

This fixes it.
No, what if Flush is called after
b.items.P() and the buffer is empty?

.

.

.
b.Remove():

b.mutex.lock()
b.items.P()
x = b.sb.Remove()
b.mutex.unlock()
return x

.

.

.

OK, now we are good!
No, not really. We avoid the race condition but prone
to a DEADLOCK. Can reach point where no one is able
to proceed. How?

• Use semaphore “items” (Bryant and O’hallaron)

Lets say you call Remove when buffer is empty.
Remove gets lock. Somewhere else, want to Insert,
but can't get past lock.

Hard to fix, need different approach.

Buffer using ConditionVars

12

cvar.Wait():
Must be called after locking mutex.
Atomically: release mutex & suspend operation

When resume, lock mutex (but maybe not right away)

cvar.Signal():
If no thread suspended, then NO-OP
Wake up (at least) one suspended thread.
(Typically do within scope of mutex, but not required)

• Lets use Condition Variables (cvars)
• cvars provide a sync point, one thread suspended until

activated by another. (more efficient way to wait than
spin lock)

• cvar always associated with mutex
• Wait() and Signal() operations defined with cvars

13

b.Init():
b.sb = NewBuf()
b.mutex = 1
b.cvar = NewCond(b.mutex)

b.Insert(x):
b.mutex.lock()
b.sb.Insert(x)
b.sb.Signal()
b.mutex.unlock()

b.Remove():
b.mutex.lock()
if b.sb.Empty() {

b.cvar.wait()
}
x = b.sb.Remove()
b.mutex.unlock()
return x

b.Flush():
b.mutex.lock()
b.sb.Flush()
b.mutex.unlock()

Buffer using ConditionVars

// wait() Note that lock is first released & then retaken
Atomically: release mutex & suspend operation
When resume, lock mutex (but maybe not right away)

// Signal() If no thread suspended, then NO-OP
Wake up (at least) one suspended thread.
(Typically do within scope of mutex, but not required)

14

b.Init():
b.sb = NewBuf()
b.mutex = 1
b.cvar = NewCond(b.mutex)

b.Insert(x):
b.mutex.lock()
b.sb.Insert(x)
b.sb.Signal()
b.mutex.unlock()

b.Remove():
b.mutex.lock()
if b.sb.Empty() {

b.cvar.wait()
}
x = b.sb.Remove()
b.mutex.unlock()
return x

b.Flush():
b.mutex.lock()
b.sb.Flush()
b.mutex.unlock()

Buffer using ConditionVars

Still a small problem.

Cvar.wait() // 3 steps

Atomically {release lock + suspend operation)
.
.
.
Resume Execution
.
// point of vulnerability, someone can flush here
.
Lock Mutex

What a signal means:
Mesa semantics (looser) vs Hoare Semantics (tighter)

15

b.Init():
b.sb = NewBuf()
b.mutex = 1
b.cvar = NewCond(b.mutex)

b.Insert(x):
b.mutex.lock()
b.sb.Insert(x)
b.sb.Signal()
b.mutex.unlock()

b.Remove():
b.mutex.lock()
while b.sb.Empty() {

b.cvar.wait()
}
x = b.sb.Remove()
b.mutex.unlock()
return x

b.Flush():
b.mutex.lock()
b.sb.Flush()
b.mutex.unlock()

Buffer using ConditionVars

Change “if” to While

// wait() Note that lock is first released & then retaken
Atomically: release mutex & suspend operation
When resume, lock mutex (but maybe not right away)

// What happens
Lock

if !sb.empty() goto ready
Unlock
wait for signal
Lock

if !sb.empty() goto ready
Unlock
wait for signal
Lock
. . .

ready: Can safely assume have lock & that buffer nonempty

Simple Rule: With Mesa semantics, use while loops
to recheck the condition. Always safe to do so.

Additional examples for Cvars in the Remzi Ref.

Today's Lecture Outline

• Concurrency Management - Synchronization

• Part I: Review of Classical Concurrency
• Concepts, Locks, Condition Variables,

• Part II: Concurrency Model in GO
• Quick review of yesterday’s recitation on GO Overview

For details, look at the slides for recitation

16

17

Concurrency model for GO

• Set up a mini Client/Server within programs
• “Channels” and “GOroutines”

• Channels are used for:
• Passing information around (are typed: int, char, …)
• Synchronizing GOroutines
• Providing pointer to return location (like a "callback")

• GoRoutines:
• Independently executing function, launched by “go”
• Independent call stack, very inexpensive, 1000s of them

• Concept: Instead of communicating by sharing memory,
share memory by communicating

Concurrency vs Parellelism

• Source: GO concurrency Bob Pike (Google)
• Concurrency is not parallelism, although it enables

parallelism
• 1 Processor: Program can still be concurrent but

not parallel
• However a well written concurrent program may

run well on multiprocessor platform

18

GO Concurrency

• Make Channel of any object Type Source

• Bounded FIFO queue
c := make(chan int, 17)
d := make(chan string, 0)

• Insertion (If channel full, wait for receiver).
Then put value at the end.
c <- 21

• Removal (If channel empty, then wait for sender.
Then get first value)
s := <- d

• Note, when channel capacity is 0,
Insert/Remove is a rendezvous. i.e. sync point

19

GO Concurrency – Examples

• Patterns

• Capacity = 0; Sync Send/Rcv
insert remove
------> | ------->

• Capacity = 1: Pass token from sender to receiver
insert _ remove
------> |X| ------->

• Capacity = n: Bounded FIFO (e.g. n=5)
insert _________ remove
------> |X X X X X| ------->

20

GO Concurrency – Mutex

21

• Use GO Channels to implement a Mutex
type Mutex struct {

mc chan int
}

// Create an unlocked mutex
func NewMutex() *Mutex {

m := &Mutex{make(chan int, 1)}
m.Unlock() # Initially, channel empty == locked
return m

}

// Lock operation, take a value from the channel
func (m *Mutex) Lock() {

<- m.mc # Don't care about value
}

func (m *Mutex) Unlock() {
m.mc <- 1 # Stick in value 1. }

GO Concurrency – Limitations

22

• GO Channels have some limitations
• Size: Bounded when initialized, cannot have

unbounded buffer
• No way to test for emptiness. When read from channel

cannot put back value to head of channel.
• No way to flush channel
• No way to examine first element

• Point 1: GO channels low level primitives. Most
Apps will need you to build more structure on top

• Point 2: GO also has support for mutex/cvars/etc

Summary

• Concurrency is a style of programming
• Different scales, from single node to large DSs
• Requires Mutual Exclusion: Mutex, Efficiency, Fairness

• Various Primitives:
• Semaphores, Mutexes, Condition Variables
• Hard to write concurrent programs that are correct

under all conditions
• GO Concurrency Model

• Channels and GoRoutines
• Use channels for communication, instead of Mutex/Sem
• Different concurrency patterns, several limitations

23

Questions?

24

Backup

25

