
Distributed	Systems

15-440	/	15-640

Fall	2018

Welcome!	Course	Staff	

Guoyao (Freddie)	Feng

Dohyun Kim

Chelsea	Chen

Yuvraj Agarwal

Amadou Latyr Ngom (TBD!)

Tushar	Agarwal

Tian	Zhao

Karan	Dhabalia Zeleena Kearney

Instructors

10	TA’s

Samuel	Kim

Daniel	Berger

Course	Logistics
• Course	Policies

• Website:	https://www.synergylabs.org/courses/15-440
• Piazza:	piazza.com/cmu/fall2018/1544015640/home		
• Obligatory	discussion	of	{late	days,	cheating,	etc.}

• Waitlist!
• Optional	Recitations:	Primarily	for	project	support		
• Office	hours	/	TAs	are	on	class	web	page	(check	often)		
• Go	work	through	the	Tour	of	Go!

• https://tour.golang.org/welcome/1

Waitlist
• Waitlist	of	unprecedented	size.		
• Registered:	440	(106)	+	640	(87)	=>	193	(+12	invited)	
• Waitlisted:		440	(23)	+	640	(80)	=>	103
• The	bad	news:		We	are	already	full.	We	are	by	law	
limited	to	physical	class	size,	not	subject	to	negotiation.		
Section	A	(200	people	max)

• The	plea:		Not	serious?		PLEASE	DROP	SOON.
• The	strategy:

• 1st week,	add	a	few	more	people	(in	640)	- Attend	class!
• Follow	WL	order	(SCS,	ECE/INI)	– Estimate	maybe	~20

• These	get	enrolled	only if	someone	drops		(we	will	email	you)			

Processing	WL/Enrollment

• Unable	to	able	to	take	the	class	if:
• If	not	taken	213/513	at	CMU *before*	
• If	you	are	an	UGRAD	and	lower	than	a	“C”	in	213
• If	you	are	a	Grad	and	lower	than	a	“B-”	in	213/513

• Priority	order
• Required:	CS	UGrad,	MS	in	SCS	(MSCS,	MSDC,	MITS,..)
• .. then	WL	rank	+	213	Grade	for	ECE	and	INI	students	

• Our	apologies:	Resource	Limitations	(Room,	TAs,	..)
• Questions?	Tracy	Farbacher (tracyf@cs.cmu.edy)		

Recitations	&	TA	hours
• Optional	Recitations	this	year

• Two	1hr	sessions:	6pm	– 9pm		(most	likely	Tuesday/Wednesday)	
• Best	effort:	room	availability,	non	overlap	with	classes
• TAs	will	strictly	enforce	room	size	limit,	if	you	find	no	seats	please	come	
to	the	next	session	(Overflow	disallowed	by	fire	code!).	

• Recitations	(6	or	7)	primarily	to	support	Programming	Projects	
• Introduction	to	GO	(9/5)
• Introduction	to	P0,	P1,	P2,	P3	+	Discussion	after	projects	due			
• Lead	by	TAs,	are	not	meant	to	go	over	class	 lectures

• TA	Office	Hours	(7	days	/	week,	spread	out	during	the	day)	
• No	office	hours	the	day	before	projects	or	homeworks are	due	

Course	Goals
• Systems	requirement:

• Learn	something	about	distributed	systems	in	particular;
• Learn	general	systems	principles	(modularity,	layering,	
naming,	security,	...)

• Practice	implementing	real,	larger	systems;	in	teams;		
must	run	in	nasty	environment;	

• One	consequence:		Must	pass	homeworks,	exams,	
and	projects	independently	as	well	as	in	total.	

• Note,	if	you	fail	either	you	will	not	pass	the	class	

Course	Format
• ~24	lectures:	Tu/Th	10:30am	– 11:50am	in	GHC	4401

• Office	hours:		Practical	issues	for	implementing	
projects;		general	questions	and	discussion

• 4	projects;		2	solo	(p0,	p2),	2	person	team	(p1,p3)
• P0	– warm	up	project,	learn	syntax	of	GO
• P1:	Distributed	(internet-wide)	bitcoin	miner
• P2:	Project	with	distributed	systems	concepts	like	
distributed	commit/consensus	(e.g.	PAXOS/RAFT)

• P3:	Building	Tribbler (or	something,	TBD)

Course	Format	– Midterms
Everything	on	this	slide	is	tentative,	check	website

• Plan:	Two	Mid-terms	*during	class	times*
• Tentative:	Oct	18th	and	Dec	6th,	subject	to	change
• *May*	have	to	move	2nd	midterm	to	finals	week		

• Registrar:	Please	do	not	make	any	plans	to	leave	for	
winter	break	before	the	final	exam	schedule	is	out.	

• If	you	must,	then	earliest	day	you	can	safely	leave:	Dec	18th

Study	Material
• Slides	and	notes	on	course	website

• Not	identical	to	prior	15-440	instances

• Distributed	Systems	3.0.1	(2017)
• Free	download
• Link	to	purchase	($25)	from	syllabus	page

• Several	useful	references	on	web	page

About	Projects
• Systems	programming	somewhat	different	from	what	
you’ve	done	before

• Low-level	(C	/	GO)
• Often	designed	to	run	indefinitely	(error	handling	must	be	rock	
solid)

• Must	be	secure	- horrible	environment
• Concurrency	
• Interfaces	specified	by	documented	protocols

• Office	Hours	&	“System	Hacker’s	View	of	Software	
Engineering”

• Practical	techniques	designed	to	save	you	time	&	pain
• WARNING:	Many	students	dropped	during	Project	1

=>	started	too	late!

Collaboration
• Working	together	important

• Discuss	course	material
• Work	on	problem	debugging

• Parts	must	be	your	own	work
• Homeworks,	midterm,	final,	solo	projects

• Team	projects:		both	students	should	understand	
entire	project

• What	we	hate	to	say:		we	run	cheat	checkers...
• Please	*do	not*	put	code	on	*public*	repositories	
• Partner	problems:		Please	address	them	early

Late	Work
• 10%	penalty	per	day

• Cannot	be	more	than	2	days	late	
• (no	exceptions	after	48	hours	of	due	date/time)	

• Usual	exceptions:	
• documented	medical,	emergency,	etc.

• Talk	to	us	early	if	there’s	a	problem!

• Regrade	requests	in	writing	to	course	admin

Why	take	this	course?
• Huge	amounts	of	computing	are	now	distributed...

• A	few	years	ago,	Intel	threw	its	hands	up	in	the	air:		couldn’t	increase	GHz	much	
more	without	CPU	temperatures	reaching	solar	levels

• But	we	can	still	stuff	more	transistors	(Moore’s	Law)
• Result:		Multi-core	and	GPUs.
• Result	2:		Your	computer	has	become
• a	parallel/distributed	system

• Oh,	yeah,	and	that	whole	Internet	thing...
• my	phone	syncs	its	calendar	with	google,	which	I	can	get	on	my	desktop	with	a	

web	browser,	...
• (That	phone	has	the	computing	power	of	a	desktop	 from	10	years	ago	and	communicates	

wirelessly	 at	a	rate	5x	faster	than	the	average	american home	could	in	1999.)

• Stunningly	impressive	capabilities	now	seem	mundane.		But	lots	of	great	stuff	
going	on	under	the	hood...

• Most	things	are	distributed,	and	more	each	day

If	you	find	yourself	...
• In	Hollywood....

• ...	rendering	videos	on	clusters	of	10s	of	1000s	of	nodes?
• Or	getting	terabytes	of	digital	 footage	from	on-location	to	post-
processing?

• On	Wall	Street...
• tanking	our	economy	with	powerful	simulations	 running	on	large	
clusters	of	machines

• For	11	years,	the	NYSE	ran	software	from	Cornell	systems	folks	to	
update	trade	data

• In	biochem...
• using	protein	folding	models	that	require	supercomputers	to	run

• In	gaming...
• Writing	really	bad	distributed	systems	to	enable	MMOs	to	crash	on	a	
regular	basis

• Not	to	mention	the	obvious	places		(Internet-of-Things	Anyone?)

What	Is	A	Distributed	System?
“A	collection	of	independent	computers	that	appears	
to	its	users	as	a	single	coherent	system.”

• Features:	
• No	shared	memory	– message-based	communication
• Each	runs	its	own	local	OS
• Heterogeneity

• Ideal:	to	present	a	single-system	image:
• The	distributed	system	“looks	like”	a	single	computer	
rather	than	a	collection	of	separate	computers.

Characteristics	of	a	DS
• Present	a	single-system	image

• Hide	internal	organization,	communication	details	
• Provide	uniform	interface

• Easily	expandable
• Adding	new	servers	is	hidden	from	users

• Continuous	availability
• Failures	in	one	component	can	be	covered	by	other	
components

• Supported	by	middleware

Distributed	System	Layer

Figure 1-1. A distributed system organized as middleware. The
middleware layer runs on all machines, and offers a uniform
interface to the system

Goal	1	– Resource	Availability
• Support	user	access	to	remote	resources	(printers,	
data	files,	web	pages,	CPU	cycles)	and	the	fair	
sharing	of	the	resources

• Economics	of	sharing	expensive	resources

• Performance	enhancement	– due	to	multiple	
processors;	also	due	to	ease	of	collaboration	and	
info	exchange	– access	to	remote	services

• Resource	sharing	introduces	security	problems.

Goal	2	– Transparency
• Software	hides	some	of	the	details	of	the	
distribution	of	system	resources.

• Makes	the	system	more	user	friendly.

• A	distributed	system	that	appears	to	its	users	&	
applications	to	be	a	single	computer	system	is	said	
to	be	transparent.

• Users	&	apps	should	be	able	to	access	remote	resources	
in	the	same	way	they	access	local	resources.

• Transparency	has	several	dimensions.

Types	of	Transparency
Transparency Description
Access Hide differences in data representation &

resource access (enables interoperability)
Location Hide location of resource (can use resource

without knowing its location)
Migration Hide possibility that a system may change

location of resource (no effect on access)
Replication Hide the possibility that multiple copies of the

resource exist (for reliability and/or availability)
Concurrency Hide the possibility that the resource may be

shared concurrently
Failure Hide failure and recovery of the resource. How

does one differentiate betw. slow and failed?
Relocation Hide that resource may be moved during use

Transparency	to	Handle	Failures?

slide	from	Jeff	Dean,	Google

Goal	2:	Degrees	of	Transparency
• Trade-off:	transparency	versus	other	factors

• Reduced	performance:	multiple	attempts	to	contact	a	
remote	server	can	slow	down	the	system	– should	you	
report	failure	and	let	user	cancel	request?

• Convenience:	direct	the	print	request	to	my	local	printer,	
not	one	on	the	next	floor

• Too	much	emphasis	on	transparency	may	prevent	
the	user	from	understanding	system	behavior.

Goal	3	- Openness
• An	open	distributed	system	“…offers	services	
according	to	standard	rules	that	describe	the	syntax	
and	semantics	of	those	services.”		In	other	words,	the	
interfaces	to	the	system	are	clearly	specified	and	freely	
available.	

• Compare	to	network	protocols,	Not	proprietary
• Interface	Definition/Description	 Languages	(IDL):	used	
to	describe	the	interfaces	between	software	
components,	usually	in	a	distributed	system

• Definitions	are	language	&	machine	independent
• Support	communication	between	systems	using	different	
OS/programming	languages;	e.g.	a	C++	program	running	on	
Windows		communicates	with	a	Java	program	running	on	
UNIX

• Communication	is	usually	RPC-based.

Examples	of	IDLs
• IDL:	Interface	Description	Language

• The	original

• WSDL:	Web	Services	Description	Language
• Provides	machine-readable	descriptions	of	the	services

• OMG	IDL:	used	for	RPC	in	CORBA
• OMG	– Object	Management	Group

• …

Open	Systems	Support	…
• Interoperability:		the	ability	of	two	different	
systems	or	applications	to	work	together	

• A	process	that	needs	a	service	should	be	able	to	talk	to	
any	process	that	provides	the	service.

• Multiple	implementations	of	the	same	service	may	be	
provided,	as	long	as	the	interface	is	maintained

• Portability:		an	application	designed	to	run	on	one	
distributed	system	can	run	on	another	system	
which	implements	the	same	interface.

• Extensibility:	Easy	to	add	new	components,	
features

Goal	4	- Scalability
• Dimensions	that	may	scale:

• With	respect	to	size
• With	respect	to	geographical	distribution
• With	respect	to	the	number	of	administrative	
organizations	spanned

• A	scalable	system	still	performs	well	as	it	scales	up	
along	any	of	the	three	dimensions.

Summary:	Goals	of	DS
• Resource	accessibility

• For	sharing	and	enhanced	performance

• Distribution	transparency
• For	easier	use

• Openness
• To	support	interoperability,	portability,	extensibility

• Scalability
• With	respect	to	size	(number	of	users),	geographic	
distribution,	administrative	domains

Enough	advertising
• Let’s	look	at	one	real	distributed	system
• That’s	drastically	more	complex	than	it	might	seem	
from	the	web	browser...

Lets	say	you	were	wondering	what	
President	Trump	is	upto today	… ?!?

...	wonder	what	the	secret	is	of	his	amazing	hairdo!	..

Remember	IP...

From:		128.237.206.206
To:						66.233.169.103

<packet	contents>

hosts.txt

www.google.com	66.233.169.103
www.cmu.edu	128.2.185.33
www.cs.cmu.edu128.2.56.91
www.areyouawake.com
66.93.60.192
...

Remember	IP...

From:		128.237.206.206
To:						66.233.169.103

<packet	contents>

The	Google	Example
• Note	that	URL:		www.google.com
• But	your	computer	has	an	IP	address...

• Naming!		The	“Domain	Name	System”,	or	DNS,	translates	names	to	IP	
addresses

• In	the	days	of	yore,	this	was	a	text	file	called	“hosts.txt”	that	
everyone	periodically	downloaded

• Today,	with	hundreds	of	millions	of	domains...
• It’s	a	big	distributed	system	that	allows	people	to	update	small	parts	
(“moo.cmcl.cs.cmu.edu”)	without	coordinating	with	the	owners	of	
other	parts.		We’ll	see	this	soon.

Domain	Name	System

CMU	DNS	server

`
who	 is	www.google.com?

www.google.com is	66.233.169.103
.com	DNS	server

google.com	DNS	server

`
.	DNS	server

who	 is	www.google.com?
ask	the	.com	guy...	(here’s	his	IP)

`
ask	the	google.com	 guy...	(IP)

`

66.233.169.103

who	 is	www.google.com?

Domain	Name	System

CMU	DNS	server

`
who	 is	www.google.com?

www.google.com is	66.233.169.103
.com	DNS	server

google.com	DNS	server

`
.	DNS	server

who	 is	www.google.com?
ask	the	.com	guy...	(here’s	his	IP)

`
ask	the	google.com	 guy...	(IP)

`

66.233.169.103

who	 is	www.google.com?

Decentralized	- admins	update	own	domains	without	
coordinating	with	other	domains
Scalable	- used	for	hundreds	of	millions	of	domains

Robust	- handles	load	and	failures	well

But	there’s	more...

who	 is	www.google.com?

google.com	DNS	server

`128.237.206.206

Which	google	
datacenter	is	
128.237.206.206
closest	to?

Is	it	too	busy?

66.233.169.99Search!

A	Google	Datacenter

How	big?		Perhaps	one	million+	machines

usually	don’t	use	more	than	20,000machines	to	
accomplish	a	single	task.	[2009,	probably	out	of	
date]

but	it’s	not	that	bad...

Search	for	“Trump	
hairdo”	

Front-end

slide	from	Jeff	Dean,	Google

Front-end

i1 i2 i3

i4 ...

i1 i2 i3

i4 ...

i1 i2 i3

i4 ...

Split	into	chunks:		
make	single	
queries	faster

Replicate:		
Handle	load

GFS	distributed	filesystem Replicated+	Consistent+	Fast

How	do	you	index	the	web?
• Get	a	copy	of	the	web.
• Build	an	index.
• Profit.

There	are	over	1	trillion	unique	URLs
Billions	of	unique	web	pages
Hundreds	of	millions	of	websites
30??	terabytes	of	text

=
• Crawling	-- download	those	web	pages
• Indexing	-- harness	10s	of	thousands	of	machines	
to	do	it

• Profiting	-- we	leave	that	to	you.

• “Data-Intensive	Computing”

MapReduce	/	Hadoop

Data	
Chunks

...

Computers

Data	
Transformation

Sort

Data
AggregationStorage

Storage

MapReduce	/	Hadoop

Data	
Chunks

...

Computers

Data	
Transformation

Sort

Data
AggregationStorage

Storage

Why?		Hiding	details	of	programming	10,000	
machines!

Programmer	writes	two	simple	functions:

map	(data	item)	->	list(tmp	values)
reduce	 (list(tmp	values))	->	list(out	values)

MapReduce	system	balances	load,	handles	
failures,	 starts	job,	collects	 results,	etc.

All	that...
• Hundreds	of	DNS	servers
• Protocols	on	protocols	on	protocols
• Distributed	network	of	Internet	routers	to	get	
packets	around	the	globe

• Hundreds	of	thousands	of	servers
• ...	to	find	out	what’s	the	deal	with	Trump’s	hair!	

Welcome!	Course	Staff	

Guoyao (Freddie)	Feng

Dohyun Kim

Chelsea	Chen

Yuvraj Agarwal

Amadou Latyr Ngom (TBD!)

Tushar	Agarwal

Tian	Zhao

Karan	Dhabalia Zeleena Kearney

Instructors

10	TA’s

Samuel	Kim

Daniel	Berger

Thanks!

