15-440/640 Distributed Systems
Midterm SOLUTION

Name:

Andrew ID:

October 18, 2018

e Please write your name and Andrew ID above before starting this exam.

e This exam has 20 pages, including this title page. Please confirm that all pages are
present.

e This exam has a total of 100 points.

Question | Points | Score

1 15
2 20
3 9
4 12
5 10
6 16
7 16
8 2

Total: 100

True/False

1. Circle whether each statement below is true or false. ***ALSO*** give a one to two
sentence reason for your answer.

Each correct answer is worth 3 points (1pt for the T/F and 2pts for the reason).

(a) (3 points) [True, False] CODA uses pessimistic replication to ensure high-availability
to users.

Solution: FALSE. CODA uses optimistic replication, where it assumes write
conflicts are rare and clients can hoard files.

(b) (3 points) [True, False] Write Ahead Logging for transactions is used to ensure both
Atomicity and Isolation properties of ACID.

Solution: False: WAL is used for Atomicity and Durability properties, it does
not ensure Isolation (i.e. transactions happen in some serial order, one after the
other) of ACID.

(c) (3 points) [True, False] In the context of data stores, having eventual consistency
does not imply that the data store is also sequentially consistent.

Solution: True: eventually consistency is the most relaxed form of consistency,
while sequential consistency is much stronger, requiring the same sequential
order on all nodes.

(d) (3 points) [True, False] Kerberos is a system used to throttle users who are abus-
ing their access to a DFS (e.g., making too many requests, consuming too much
bandwidth).

Solution: False, Kerberos is an authentication system used to authorize and
authenticate users, for example in a DFS.

(e) (3 points) [True, False] Under LSP protocol from P1, after the initial connection
setup phase, we can optimize network bandwidth by not sending out ACK 0 mes-
sages when the epoch timer fires, as long as the network does not reorder messages.
There would be no change in the behavior of LSP protocol.

Solution: Solution: False. ACK 0 message works as a “heartbeat”. It prevents
LSP server and client dropping the connection when they are not receiving any
message just because they have nothing to send out. ACK 0 message is still
needed even if the network guarantees in-order delivery.

Page 2

Page 3

Short Answers

2. In the following, keep your answers brief and to the point (i.e. 2-3 sentences).

(a)

(4 points) You are responsible for building the successor to the popular Skype
Voice-over-IP protocol that works across the internet (high RTTs). Your boss went
to CMU but did not take 441 or 440, and thinks you should use TCP due to its

reliable delivery feature. Can you explain to him why this is not a good idea?

Solution: Use UDP (as discussed in class). Reliability is less important than
reducing delay and jitter. TCP can cause delays for longer RTT links due to
reliable delivery and need for ACKs. (One point for mentioning one of packet
loss/UDP, delay and jitter).

(4 points) NoSQL systems like Amazon’s Dynamo allows writes to continue to all
machines during a network partition. Once reconnected, Dynamo nodes seek to
reconcile inconsistent file versions. Which technique would you choose to detect
and flag parallel events? Briefly explain why:.

Solution: Vector clocks. Only algorithm that can properly preserve causality,
so Dynamo would know that two events happened in parallel. Lamport clocks
can’t do this, as they create arbitrarily ordered timestamps, which might give
two parallel events different timestamps. (2 points for Vector clocks and 2 points
for correct reason. Note: Totally Ordered Lamport clocks is incorrect)

(2 points) Name and briefly describe two differences between the time synchroniza-
tion algorithm used in NTP and Christian’s algorithm.

Solution:

1. NTP incorporates the server processing time. Actually a different equa-
tion.

2. NTP sends multiple measurements to several time master servers in par-
allel.

3. NTP is hierarchically organized. Christian’s algorithm considers only a
single time master server.

(1 points for each point. If you elaborated only one point, you would not get
extra points)

Page 4

You want to design a file system that can tolerate up to f node crash failures. For
each of the following scenarios, how many file servers do you need at least? State
the values and explain in one sentence.

(2 points) The file system is using Primary-backup to replicate the files.

Solution: f+1. In Primary-backup, we maintain n replicas (1 primary and n-1
backups). Each backup can take over if the primary node fails.

(1 point for the number of file servers and 1 point for explanation.)

(2 points) The file servers are using Basic Paxos to elect a leader among themselves.

Solution: 2f+1. Paxos requires the majority of the acceptors for a successful
transaction commit.

(1 point for the number of file servers and 1 point for explanation.)

Consider two proposers A and B in the Paxos algorithm. Suppose that A is starting
phase 2 (accept) and B is starting phase 1 (prepare). Assume that participants will
not crash throughout the process.

(6 points) Sketch out a scenario where the Paxos algorithm does not achieve the
liveness property (a labeled sketch is fine, you can annotate a part that is “repeated
forever”).

Solution: Solution: 1. B receives the majority in phase 1 with a propose
number higher than A’s. 2. Before A receives majority in phase 2, B enters
phase 2 and starts sending accept messages. 3. A fails to get majority because
participants who accepted B’s prepare messages reject A’s accept messages.
Note that participants who accepted B’s prepare messages must have formed
the majority, so it is possible that A cannot get the majority in phase 2. 4. A
returns to phase 1 as it fails to get majority in phase 2.

By swapping the role of A and B, we return to the initial state and can repeat
the same steps above such that neither will be able to proceed.

(A sketch must capture the 4 steps above to get 6 points. We also accept the
“dueling proposers” scenario as the answer. We give 4 points to a mostly correct
answer with minor issues and 2 points to an answer that fails to show the key
idea but is sensible. Otherwise, we gives 0 point.)

Page 5

Communication and RPC

. You are hired by the augmented reality startup AR? that needs to perform a complex
image processing algorithm. Because mobile phones have little computing power, AR?’s
algorithm gets unacceptably slow as image sizes increase. Your manager, Jaine, proposes
to use RPC to perform the work on a remote, more powerful server.

You measure the following numbers, assuming a base image scaling factor of N.

The running time of AR%s algorithm is M(N) = 3N ms on a mobile phone. On
the server, it’s S(N) = N/3 ms.

Marshalling and unmarshalling take (N/6 + 20) ms in total.
The average RT'T between a user and the server is 80 ms.
Bandwidth is infinite between the user and the server.

(4 points) For what value of N is Jaine right, i.e., AR? should be using an RPC
instead of a local call?

Solution: Want 3N > 80ms + (N/6 + 20)ms + N/3 = 100ms + N/2. So,
N > 40.
We also accepted answers that considered 2(N/6 + 20)ms or 4(N/6 + 20)ms

(2 points) With geo-replication, AR? is able to reduce the average RTT. How will
N change? (Give a qualitative answer)

Solution: It decreases, because the server’s computation becomes as fast as
the phone’s for a lower value of V.

(3 points) As AR? acquires 1) more and more powerful servers and 2) places them
closer to users, you notice that the total RPC time does not improve very much.
Explain why, by pointing out the bottleneck, in two sentences or less.

Solution: The bottleneck is the marshalling time. No matter how much every-
thing else is improved, the marshalling time will keep the RPC time high.

Page 6

Page 7

Distributed File Systems: since really everything that
was innovative in DFS’s was invented @ CMU !!

. Karan has decided to drop out of CMU, work with Peter Thiel since he believes that
education is overrated. He wants to create the next great cloud file storage company
called "SoftBox”. However, his starting funding is very low, since no one wants to give
money to him. This means his Softbox system has occasional network partitions due to
node failures, and high network latency.

(a)

(3 points) Karan wants to market that he can provide two guarantees: (1) That
all file changes will be *immediately™* visible to all other clients. (2) Any client can
access any file at any time. Explain whether or not this is possible? (Hint: Recall
that his funding is very low.)

Solution: Not possible by CAP Theorem because he wants to guarantee Con-
sistency and Availability, but his system will have network partitions.

(3 points) Karan argues that companies like Dropbox and Google Drive are suc-
cessful because they provide the same guarantees as he is aiming for in Softbox. Is
Karan right? Briefly explain your answer.

Solution: No, they prioritize ’availability’ over ’'consistency’. Partial credit
also given for answers relating Google/DropBox’s high budget.

(3 points) Karan decides to relax his requirements a bit to get to market faster.
He decides to prioritize ” Any client can access any file at any time”. Should Karan
implement his system with optimistic or pessimistic replication?

Solution: Optimistic replication for high availability.

(3 points) Karan is worried that his users will experience extremely high latency ev-
ery time they request a file. What is a simple technique to improve user experience?

Solution: Mention: Client-side caching of whole files or LBFS.

Page 8

Logging and Failure Recovery

5. You have designed a new distributed system, that is highly scalable and uses 3 nodes,
P1, P2, P3 to send messages to each other (shown in square gray boxes). Since you are
a smart CMU student you are convinced that node failures are a reality and you must
prepare for the worst and bring back your entire application to a consistent state. You
like the idea of checkpointing, and each node in your system takes independent snapshots
after sending or receiving at most 3 messages. (C1 - C10 in the example below). Now,
the following happens:

C1 C4 Cc7
P1 Y 7i N Y A
)
S % s SN
\ / / \ v C8y I
P2 ‘V ‘I, \ l, ‘q \q II \/CraSh'
,7‘ 1 A \ Y /\
/ \ \ / \ 1 N\ 13
SRR U \ Ty 2N R X
/ 1 \
/ V3o c6 / €I Crash!
p3 —L wi N 4 N g | \/

(a) (5 points) Process P2 and P3 both fail. Can your system recover from this failure
and get back to a consistent state using the checkpoints? If so, calculate a consistent
recovery line (listing the snapshots) for rollback. Note:

1. If there is no recovery line state why.
2. If there are multiple, list the ideal recovery line. Explain your choice.

Solution: We can’t choose C7 for P1 since message 12 shows having been
received in C7 by P1, but has not been sent by P2 in C8. So, we need to roll
back P1 to C4 Instead. P2 also has to be rolled back to C5 since C8 won’t work
because of numerous messages that show P2 received in C8 (e.g. 10, 8 etc). P3
is similarly rolled back to C6.

Now C4, C5, C6 for a consistent recovery line based on the definition of a
consistent checkpoint. 2,3,5,7 messages are both in C5 and C6. Similarly 1-4
messages are both in C4 and C5. Note, Message 6 is still OK since P2 shows
it as sent in its checkpoint C5, but P1 does not show it being received (in C4).
This is OK.

(2 points for the consistent recovery line found C4-C5-C6, 3 points for completely
correct reasoning of why its consistent. We also generously gave 2 points for
demonstrating general understanding of the concepts)

Page 9

(b) (5 points) Next, you realize that both checkpoints C5 and C8 taken by P2 were
actually corrupt on the disk. Can your system still recover to a consistent state by
using the other stored checkpoints? If so, explain how. If not, explain why not, and
give one efficient mechanism on how you could address this issue going forward.

Solution: Unfortunately, in this case it does not look like there is any other
consistent recovery line. (1pt)

Reason, P2 rolls back to C2 now since C5 is corrupt. P1 cannot use C4 (message
4 shows received by P1 in C4, but not sent by P1 in C2). P1 rolls back to C1
then and P3 to C3. However, now P3 shows message 3 received, but P2 does
not have it as sent in CHKPT C2. P2 has to roll back to the start. So, cascaded
rollback — no good recovery line.

One mechanism: augment checkpointing with Logging and replay. That way,
checkpoints don’t have to be taken as frequently and their overhead can be
minimized. When a failure happens, you can roll back the system to a consistent
checkpoint and then replay the logs to get to a more recent consistent state.

(1 point for saying no recovery line. 3 points for clearly explaining why and
mentioning cascaded rollback or its idea (2 points for explanations with some
deficiencies). 1 point for mentioning WAL or coordinated checkpointing.)

Page 10

BergerNet

. BergerNet is a new social network started by the TAs and Professors of 15440 providing
almost the same functionality as social networks do today. As a new engineering lead, it
is your job to make some crucial design decisions that are either going to make or break
the BergerNet.

BergerNet uses RPCs. Identify the easiest-to-implement RPC semantic (at-least-
once, at-most-once, exactly-once) for each of the following features. Give a *one
sentence™ reason for your choice. (1pt for semantic, 1pt for reason only if semantic
correct).

(a) (2 points) Transferring money to your friend on BergerNet

Solution: At-most once. Easiest to implement and can always retry sending
on failure.

(b) (2 points) Posting a message in the BergerNet messenger.

Solution: At-least or at-most once both work given appropriate reasoning.

(c) (2 points) Deleting a friend on BergerNet

Solution: At-least once. Delete is idempotent. At-most once does not work
because it is not the easiest to implement.

Page 11

Next, BergerNet users want to upload group collages of their friends and colleagues.
Privacy is important. So before a user can upload and publish a collage, the user
needs to get approval from all their friends and can only upload the collage if all
of them approve. Even if one friend rejects the proposal, the collage cannot be
uploaded.

(1 point) Name a protocol from lectures, with the least number of messages, to
implement the collage feature.

Solution: 2PC. Token ring might be accepted based on reasoning below. (No
partial credit)

(2 points) Describe each stage of this protocol with a bullet point in the given
context.

Solution: Voting phase - uploader asks and waits for votes Commit Phase -
Uploader decides whether to commit or not and sends decision. OR resonable
explanation for token ring. (-1pt if broadcasting decision is not mentioned)

(1 point) If the computer of the user who uploads fails during this protocol what
could be one negative outcome other than the upload failing?

Solution: Blocking. Consistency is not an issue because 2PC guarantees con-
sistency by blocking. (No partial credit)

(2 points) Is there a way of solving this problem? If yes, name a protocol that
resolves the issue, if no, explain in one sentence why.

Solution: 3PC. (No partial credit)

Page 12

BergerNet is very popular these days mainly because of how little it crashes.
(h) (2 points) Define reliability and availability (one sentence each).
e Reliability

o Availability

Solution: Reliability is the frequency of errors in a system (how long can a
system run before encountering an error.) Availibility is the ratio of the uptime
to (uptime + downtime) (slide definition also accepted). 1 pt for each. No vague

answers allowed.

Let’s take the previous year as an example. BergerNet crashed once every hour and
recovers within a second.

(i) (2 points) Would you say that BergerNet is highly available and/or highly reliable
or neither ?

Solution: Availability: 1-1/60/60 = 0.9997222. So, highly available. Reliabil-
ity: time between crashes is less than an hour - that’s bad. So not reliable. 1pt

for highly avaiable, 1 pt for not reliable.

Page 13

Page 14

Hepp Dean’s Hierarchical Mutual Exclusion

. In 2027, Foodle is the world’s leading Internet company with ten datacenters around the
globe. This future version of the Internet has neither packet loss nor network partition
nor sudden machine crashes, but the speed of light remains as a major constraint. A
critical piece of Foodle’s algorithms require mutual exclusion across all servers in all data
centers.

Foodle’s design head, Hepp Dean, proposes a new hierarchical distributed mutex. Each
datacenter has a unique coordinator, M. Across the ten datacenters, the ten coordi-
nators uses Ricart & Agrawala’s algorithm, which has the following thread-safe API:
BroadcastRequest (), GotGlobalLock(), BroadcastRelease().

Within each datacenter, the coordinator manages datacenter-local mutual exclusion
among the local client machines. Below is Hepp’s pseudo code for coordinators.

1 M.Init(Q):

2 # Initialize this leader machine

3 M.hasRequestedGloballLock = False

4 M.hasGlobalLock = False

5 M.Queue = NewQueue()

6 M.mutex = 0

7 M.cvar = NewCond(M.mutex)

8

9 M.GotGlobalLock():

10 # Triggered when M gets mutual exclusion among other leaders
11 M.mutex.lock()

12 M.hasRequestedGloballLock = False

13 M.hasGlobalLock = True

14 M.cvar.SignalAl1l()

15 M.mutex.unlock()

16

17 M.Lock(id):

18 # Client with id calls this function using RPC when asking for mutual exclusion.
19 M.mutex.lock()
20 if not M.hasRequestedGlobalLock && not M.hasGloballLock:
21 BroadcastRequest() // Broadcast to other leaders for mutual exclusion
22 M.hasRequestedGlobalLock = True

23

24 M.Queue.PushBack(id)

25

26 while not M.hasGloballock || M.Queue.Front() !'= id:

27 M.cvar.Wait()

28

29 M.mutex.unlock()

30

Page 15

31
32
33
34
35
36
37
38
39
40

M.Unlock(id):

Client with id calls this function through RPC when releasing mutual exclusion

M.mutex.lock()
M.cvar.SignalAl1()
M.Queue.Pop()

if M.Queue.Empty():
M.hasGloballLock = False

M.BroadcastRelease() //Broadcast to other leaders to release mutual exclusion

M.mutex.unlock()

(a) (4 points) Across different datacenters and in the absence of failures, explain briefly

why Hepp’s algorithm safely implements a mutex?

Solution: Ricart & Agrawala’s algorithm enables only a single coordinator to
hold the global lock. The coordinator gives a global lock to its clients within the
datacenter only if it has a global lock. So, only one client in the datacenter gets
a mutual exclusion and no two clients in different datacenter get the mutual
exclusion.

e Mention “Ricart & Agrawala’s algorithm” (or “global lock”, explanation
of Ricart & Agrawala) (42)

e Mention only one “coordinator” (also can be “datacenter,” “leader”, “M”)
gets “global lock” (also can be “global mutual exclusion”, “global mutex”)
or, gets into “critical section” etc. (+2)

e Walk through the code to explain one of the points above. Can cite line
numbers or function calls and explain what they do (42)

e Final score becomes min(4, sum)

(b) (4 points) Within a single datacenter and in the absence of failures, explain in less

than three sentences why Hepp’s algorithm safely implements a mutex?

Solution: Within a datacenter, the coordinator performs centralized control
over the lock among clients. M.Lock RPC returns (terminates) only if the coor-
dinator has global mutual exclusion (line 26, following M.GotGlobalLock call-
back), this is the only client with id in mutex-protected queue (M.Queue, line
26). M.Unlock pops current client’s id from the queue, wakes up other client’s
RPC using M. Cvar, and passes the local mutual exclusion to other client in the
same datacenter.

e Mention “centralized control” by “single coordinator” (also can be “single
machine,” “M” “single leader”) within a datacenter. Or, can say one

Page 16

“queue” in datacenter but should say it’s mutex, cvar protected queue —
just saying queue does not count (+2)

e Mention “only one “client” (also can be “machine”, “requestor”, or similar,
but not “M”. “leader”, “coordinator”) can get “lock”, “mutual exclusion”,
“mutex” or can get into “critical section” (+2)

e Mention coordinator’s mutex, cvar protects/gurantees mutual exclusion.
(+2)

e Walk through the code to explain one of the points above. Can cite line
numbers or function calls and explain what to do. (42)

e Final score becomes min(4, sum)

(c) (2 points) Assume that many client machines simultaneously seek to acquire the
mutex. In what order will they acquire it? Describe the order for both cases below.
All client machines in the same datacenter:

Solution: Within the same datacenter, each client will be given in First-come,
First-served order of getting M.Mutex. Note that, there could be cases where
client machine A calls M. Lock earlier than client machine B but client B’s M. Lock
gets M. Mutex first.

e Any answers implying “First-in-first-out”, “First-come-first-served”. Also
allowing: “requested order”, “timestamp of calling M.Lock” that can im-
plicitly mentions FCFS order. Do not have to catch the case noted in the
solution (the order of getting M.Mutex) (+1)

Client machines in different datacenters:

Solution: Client machines in different datacenters get mutual exclusion in the
order their coordinator gets global mutual exclusion by Ricart & Agrawala al-
gorithm.

e Any answers implying the order of Ricart & Agrawala’s algotihm. such as
“the order their coordinator gets lock”, “T'O Lamport timestamp order”,
etc. Do not allow just “timestamp order” because it is ambiguous whether
it means “Lamport clock” or “physical clock” (+1)

Page 17

(d) (3 points) State an advantage of Hepp’s hierarchical distributed mutex, assuming
that there are tens of thousands of servers in each datacenter?

Solution: Efficiency. Comparing to non-hierarchical distributed mutex where
all client machines across datacenters use one distributed mutual exclusion al-
gorithm such as Ricart & Agrawala, Hepp’s algorithm is more efficient. Hepp’s
algorithm reduces the number of requests that should be sent through relatively
poor inter-datacenter links, keeping a significant number of messages within
datacenters. Also, it reduces the total number of messages.

e Any answers implying “efficiency”, such as: “performance”. Or, a descrip-
tive answer that implies any part of the solution, such as “less number of
message”, “less inter-datacenter communication®, etc (+3)

(e) (3 points) State a disadvantage of Hepp’s hierarchical distributed mutex, in the
context of the mutex design goals discussed in class? How would you resolve it?

Solution: Unfairness. From line 37, the coordinator releases its global lock
only if there is no more local client in the queue. So, if the local clients of a
coordinator are too demanding to get the lock, one coordinator will hold the
lock forever. Clients in other datacenters will starve. The way to solve this
problem could be setting timeouts for the time a coordinator can hold global
mutual exclusion or setting the number of times a coordinator can give local
mutual exclusion, etc.

e Any answers implying “unfairness”. Any descriptive answer implying un-
fairness such as: “one datacenter can hold the lock forever” (41.5)

e Any reasonable resolution. (+1.5)

Page 18

Page 19

Anonymous Feedback

8. (2 points) Tear this sheet off to **receive points™*. We’d love it if you handed it in
either at the end of the exam or, if time is lacking, to the course secretary.

(a) Please list one thing you'd like to see improved in this class in the current or a
future version.

(b) Please list one good thing you’d like to make sure continues in the current or future
versions of the class.

Page 20

