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Using Occupancy Information to Reduce Energy Consumption within
Buildings

by
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Buildings account for 73% of the total electricity consumption in the US.

To get an in depth view of where this energy is consumed within buildings, we

instrument and monitor the buildings at UCSD to study their power consumption

patterns. We observe that the energy consumed is not proportional to the occu-

pancy levels of these buildings, thus indicating energy waste. In order to make the

power consumption more proportional to its actual usage, we build an occupancy

detection system for the CSE building at UCSD. Using this occupancy information

as an input, we duty-cycle the different subsystems of the building to save energy.

We show that by careful scheduling of the HVAC system based on the occupancy
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levels, we can reduce their energy consumption by as much as 40%. Further, we

have developed the Smart Energy Meter to monitor and actuate plug loads in the

building. This allows us to study the energy consumption patterns on a per device

basis. Based upon our smart energy meter, we have developed the Energy Audi-

tor, an analysis engine. It provides feedback to the users and building managers

by visualizing the energy consumption data, shows them the opportunity to save

energy based on the occupancy patterns and also allows the building managers to

actuate the plug loads in case of a demand response event.
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Chapter 1

Introduction

According to the US Department of Energy (DOE), buildings account for

almost 40% of primary energy consumption, 73% of total electricity and 40% of

the total carbon emissions in the United States as of 2008. Commercial build-

ings consume 46.2% of this primary energy usage[9]. Given their relatively long

lifespans, buildings constitute a major opportunity for reductions in energy use.

Given their large energy footprint, there has been a plethora of work trying

to characterize the energy consumption within buildings. The US Department of

Energy has a detailed report characterizing buildings in both the residential and the

industrial sectors. The report authored in 2008, provides a detailed breakdown of

the contributors to the energy consumption, the chief sources of energy generation,

the environmental impact of the buildings and other significant statistics[9]. At a

smaller scale, plug energy meter called ACme has been developed by UC Berke-

ley and deployed massively to trace out the energy patterns within a building[18].

Google Power Meter and Microsoft Hohm are other examples of commercial ef-

forts, providing visualization of electricity consumption provided the Smart Meter

installed can send data in their standard API[13, 27]. The Energy Dashboard

project from our group provides a visualization of the power consumption of the

entire UCSD campus[3].

As a part of our Energy Dashboard project, we have instrumented the

Computer Science and Engineering building to obtain a breakdown of its power

consumption. Analysis of the data obtained showed that there are three major

1
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subsystems contributing to the electricity consumption of the building – the HVAC

system, individual plug loads, lighting and the computing loads in the machine

room. This is in accordance with the data shown by the DOE[9] and Perez-

Lombard et al[30]. The HVAC system in CSE consumed 25% to 40% of the total

power consumption. Thus, we studied the HVAC system in further detail.

Most of the HVAC used in commercial buildings runs on a static schedule,

from morning to evening on weekdays. It does not take into account the actual

occupancy levels of the building. Modern HVAC systems divide the building into

different thermal zones and are capable of controlling them independently. If oc-

cupancy information is available, we can duty-cycle them to save energy. We

developed our own occupancy sensors and deployed them across one out of four

floors of the CSE building at UCSD. The building energy managers allowed us to

control the HVAC system based on the occupancy information received. We actu-

ated the air-conditioning for each zone based on real time occupancy information

for one floor out of the four floors of the CSE building. Our results show that we

saved 10% of the HVAC power consumption during our testing. If the system is

deployed across all the floors in the building, we estimate savings of up to 40%.

Another important contributor to the total energy consumption in buildings

is plug loads. To monitor the power consumed at each power point, we developed

our own plug load energy meter called the Smart Energy Meter (SEM). This allows

us to study the energy consumption of individual devices, individual rooms and

identify how much energy each person in the building is using. Combining this

information with the occupancy information that we are collecting, we were able

to estimate the amount of energy being wasted in each room. The energy waste

information gives feedback to both the occupants and building manager on where

they can save energy by changing their usage patterns. Actuating the devices

is tricky though, as some loads like desktop PCs have to be gracefully turned

off. To alleviate this concern, we attempt to identify the type of the device that

is connected to our energy meter. Using this type information gives the user

opportunity to automatically turn off their devices based on a set of expressive

policies. We have implemented this system and shown some preliminary results.
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The rest of the thesis is organized as follows. Chapter 2 gives a detailed view

on energy use by buildings and its subsystems. Chapter 3 explains our occupancy

detection system and how it is used to control the HVAC of the CSE building.

Chapter 4 explains our energy metering solution and the accompanying analysis

engine with actuation mechanisms. Chapter 5 concludes the thesis.



Chapter 2

Trends in Building Consumption

Buildings are diverse systems in terms of their energy use modality. To op-

timize its energy consumption, its important to know which subsystems are major

contributors to the total energy usage. Then, we can study these subsystems and

try to come up with solutions to make them more efficient. Recent work has tried

to solve this problem by providing a visualization of the electricity consumption of

buildings, and use it as a feedback to the users[3, 13, 27]. The Energy Dashboard

project from our lab provides real-time plots of energy consumption of the UC -

San Diego(UCSD) campus - from its overall consumption, to individual buildings,

to subsystems within buildings and even some individual plug loads[3]. Google

Power Meter [13] allows any Energy Meter compatible with their API to store the

data in Google’s servers and provides real-time visualization of the consumption

patterns. The Green Soda project from UC - Berkeley [18] also provides a similar

visualization using the ACme nodes as their energy metering solution.

2.1 UCSD as a Testbed

UCSD acts as an ideal testbed for such a study. The campus sprawls over

an area of 1200 acres, with a daily population of more than 45,000 people, of

which 29,000 are students. 10,000 students reside on-campus in UCSD housing.

There are a total of over 450 buildings, with ages varying from a few years(CSE) to

almost a century(Scripps), and usage patterns varying from residential apartments

4
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to theaters to departments. It would not be an exaggeration to call it a city in

itself.

UCSD has taken an ambitious goal of taking the campus off the electricity

grid. As a part of this effort, the campus has an extensive energy generation,

storage and management system in place to deliver both electricity and thermal

energy. The thermal energy is delivered in the form of hot and chilled water loop to

buildings across the campus. The centralized Energy Management Systems(EMS),

by Johnson Controls, manages HVAC systems of 60 of the largest buildings on

campus. The electricity is generated using a 30MW natural gas co-generation

plant, 2.8MW Fuel Cells and 1.2MW of solar panels. This amounts to 82% of the

annual electricity demand from the 42MW (peak) microgrid. The remainder is

imported from SDG&E.

To monitor and manage this enormous system, the buildings have been

instrumented to provide real-time energy usage data. The electrical energy is

measured using three-phase high accuracy PowerLogic meters from Schneider elec-

tric, communicating with the central campus servers using a wired network. The

thermal energy demand of the building is calculated using various measured pa-

rameters like the rate of the chilled water passing through the building and the

temperature of the water as it enters and exits the building.

The Computer Science and Engineering(CSE) building has been further

instrumented for fine grained measurements. There are several interesting char-

acteristics of this building. Constructed in 2004, its a fairly modern building,

consisting of low-E glass windows, a zonal and floor-by-floor control of the HVAC

system, and motion sensor based lighting. Cooling for the building is provided by

the campus hot and cold water loop with the HVAC system running on electricity.

CSE has a total of about 1200 occupants, 750 Desktop computers, one machine

room for servers and six instructional computer labs. A total of 15 separate cir-

cuits were metered so that the building energy consumption can be broken down

by lighting, plug loads, HVAC and machine room.
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Figure 2.1: CSE Mixed-use Building: Total electrical load for a year (August

18th, 2008 through August 16th, 2009). While the daily load varies by as much as

250KW, it never goes below 325KW. This is the base load of the CSE building.
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Figure 2.2: Variation of the electrical load in the CSE building at UCSD during

a week in August.

2.2 Building Level Trends

Figure 2.1 shows the electricity consumption of the CSE building through

the year 2009. We can see that there is not much variation in the pattern from

season to season. This is because San Diego enjoys a temperate climate throughout

the year. The peak power is consumed during the summer months, when more

cooling is required. However, we can observe that there is always a “baseline”

consumption, irrespective of the season. This can be clearly seen in Figure 2.1

during the winter break from December 18, 2008 to Jan 5, 2009. The minimum

power consumption is as high as 325kW. During this period, no classes are held,
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Figure 2.3: Detailed breakdown of the energy consumption of the CSE mixed-use

building. The data presented is for a week in August.

there is very little activity in the labs and most of the faculty are on vacation. A

similar trend can be seen in almost all the metered buildings across UCSD.

Figure 2.2 shows the energy consumption pattern for a week in August,

2009 in CSE. Its clear that the energy consumption goes high during the day

and comes down again in the evening. As pointed out in Figure 2.1, there is a

significant baseline consumption. This pattern can be split up as baseline power

and dynamic power. The CSE building has a baseline power consumption of 62.2%

of the total power consumed. For different buildings across the campus, a similar

pattern can be observed. However, this percentage of baseline to total power

varies with its usage patterns, architecture, surrounding environment (buildings

in shadows experience lesser temperatures than those exposed to sunlight) and

numerous other factors. To site a few examples, the Hopkings Parking Structure

has a baseline power of 85.3% of the total power, and in the Cognitive Sciences

building it is 81.3%. Clearly, to make buildings more energy efficient we need to

make this baseline consumption as low as possible. The submetering in the CSE

building gives us further insight into the consumption patterns by providing the

breakdown of the total power consumption in the next section.
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2.3 Building Subsystem Trends

The CSE building has been specially metered to provide electrical power

consumed by different subsystems - subsystems in the machine room, lighting

circuits to individual floors, the electrical load from the HVAC system, the elevator

load from all the plug loads. Figure 2.3 combines these power values into four

different types of loads - the Machine Room, Lighting, Plug Loads and Mechanical

loads. The power consumption pattern from August 10, 2009 to August 16, 2009

is shown.

The power consumed by lighting varies from 46kW to 63kW on a typical day.

Surprisingly, it consumes only 11.6% of the total electricity. It should be noted that

the building has employed Compact fluorescent lamps(CFL) and tubelights for its

lighting. Also, they are directly connected to the locally installed motion sensors,

which switch off the lights automatically after 30 minutes of inactivity. The power

consumed by the Machine Room is a whopping 150kW on an average during the

week, and remains almost constant (12% variation) irrespective of the workload.

A look at the power consumption levels of the Machine Room throughout the year

shows that the minimum power consumption is as high as 120kW (through the

months of January to April). This indicates that the servers are not optimized to

consume less power during periods of inactivity. Recent work from Google have

shown similar results [4]. The authors show that Google servers are only at 30%

utilization on average.

As a department of computers, most of the plug loads in the building consist

of laptops and PCs. As a part of the Somniloquy project[1], more than 750 desktop

PCs were accounted for in the building. On average, these PCs consume 100W,

accounting for close to 100kW of electricity consumption. The Plug Loads graph

in Figure 2.3 shows that their consumption varies between 110kW to 140kW. The

high baseline for the plug loads can be attributed to PCs which are not put to

sleep. Recent studies have shown that people do not put their computers to sleep

because of numerous reasons – they want to remote login to their computers, have

background processes running, need quick availability, etc.[1]

The Mechanical load takes into account the power consumed by air han-
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dlers, the climate control units and the elevator. The elevator only adds a marginal

load (maximum of 8%) on this subsystem, and most of the energy can be attributed

to the HVAC system. The HVAC system follows a static schedule, switching ON

at 6AM, providing air flow to the entire building, and going to standby mode at

6.30PM. In standby mode, the users in the building have to indicate their presence

manually using the installed thermostats and only those zones will be ventilated

by the system. A sharp increase in the power consumption can be seen when the

HVAC system starts up at 6AM. The electricity demand slowly increases through-

out the day, as more occupants pour in and the day temperature increases. There

is a sharp fall at 6.30PM as the HVAC goes into standby mode. However, the

consumption is still significantly higher than that during early morning hours. As

more and more occupants leave the building, the demand decreases to the baseline

level (at about 8PM).

2.4 Discussion

In order to make buildings energy efficient, we will have to tackle the prob-

lem from several different directions. Modern buildings are being built with ther-

mally efficient materials, low-E window glazing, solar reflecting roofs, overhangs

to block solar radiation on windows, and even building shape and orientation are

designed to save energy[12, 23]. The equipments installed in the buildings strive to

be increasingly energy efficient - programmable HVAC systems, low-flow plumbing

and motion-sensitive lighting. The newer buildings at UCSD go even a step fur-

ther, with natural ventilation, reclaiming waste water for irrigation, rooftop solar

panels and using green sustainable flooring, cabinets and paint.

Most of these techniques are useful to lower the overall energy consumption

of the building and help in reducing its carbon footprint. However, very few

techniques, like motion sensitive lighting, concentrate on reducing the energy being

wasted in daily usage. A detailed energy monitoring system in place allows us to

examine this aspect of the problem and helps us come up with solutions to tackle

them. The following chapters go on to show that the HVAC systems and the
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plug loads energy consumption are not proportional to the occupancy levels of the

buildings. We come up with solutions to identify such situations and actuate the

building systems to help reduce the wasted energy.



Chapter 3

Occupancy Controlled HVAC

System

The power consumption patterns from the Energy Dashboard show that

heating, ventilation and air conditioning (HVAC system) consume significant amount

of electrical energy. DOE states that HVAC takes up to 45% of the primary energy

consumption in residential buildings[9]. Perez-Lombard et al [30] state that HVAC

systems in office buildings consume 48% in the US, 55% in the UK and 52% in

Spain. The HVAC electrical load for the CSE building was between 25% to 40% of

the total load. This does not account for the thermal load that goes in to cooling

and heating the water that goes in and out of the system. The energy consumed

for this purpose ranges from 100kW to 200kW.

All the buildings in UCSD are managed by a central Energy Management

System(EMS) and are operated on a static occupancy schedule of 5.15AM to

10.00PM on weekdays. This is common practice in commercial buildings to ac-

commodate the standard working hours. At other times, the occupants have to

manually indicate their presence and turn on the air conditioning for their room.

However, not all the occupants come in as early as 5.15AM or leave as late as

10.00PM. The staff typically arrive at 8.00AM and leave at 4.30PM. The gradu-

ate students arrive at around 10.00AM and leave at varying times in the evening.

Further, occupants leave their offices for lunch and meetings for extended periods

of time, there are offices which are empty, conference rooms which are occupied

11
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for only a few hours in a day and storage rooms which are seldom visited.

Using occupancy information to drive energy management within buildings

has been explored extensively both in commercial products and by the research

community. The most common use is to detect presence in physical spaces using

Passive Infra Red (PIR) based motion sensors to drive lighting systems[8]. In most

cases these PIR sensors are hard wired to the buildings and are not a compelling

solution for existing buildings. Recognizing this limitation, commercial wireless

occupancy solutions [10, 17] have emerged that allow direct control of a single

HVAC unit in a home or a light fixture. Recent work has even proposed the use of

coarse grained information such as occupants entering or leaving their houses to

drive a smart thermostat[26]. Researchers have even proposed the use of ultrasonic

sensors to detect height differences between occupants[33] as well as network access

information[22] to identify individuals within shared spaces. We have developed

binary occupancy sensors and collected the information in a centralized server to

manage the HVAC system of the CSE building.

The CSE building is divided into different thermal zones, and each ther-

mal zone can be independently controlled by the HVAC system. Such a system

was constructed so that the ventilation is provided to only those zones which are

currently occupied. However, this facility is only used when the HVAC system

is in standby mode and the occupants indicate their presence manually. If the

occupancy of each of these zones could be detected automatically and reliably, the

HVAC system can then schedule the ventilation according to this information. This

ideal HVAC system would then have a baseline energy usage to cool the common

areas like lobbies and hallways, and the dynamic part will depend on the zones

which are currently occupied, making the HVAC energy demands proportional to

the occupants in the building.

The rest of the chapter explains our system in detail and is organized as

follows. Section 3.1 explains the HVAC system of the CSE building. Section 3.2

shows the potential energy savings that can be achieved if a fine grained occu-

pancy driven HVAC system is in place. Section 3.3 provides the characteristics of

the occupancy sensing node developed by us. Section 3.4 explains the actuation
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mechanisms employed based on the occupancy information. Section 3.5 gives the

results obtained and Section 3.6 discuss the related work and future challenges.

3.1 The HVAC System

Modern buildings typically have centralized HVAC systems. Cold air is

supplied by huge air handlers in the basement of the building, which reaches the

individual offices using the air-conditioning ducts. The building is divided into

different thermal zones, each of which is directly controlled by a Variable Air

Volume(VAV) box. The VAV boxes control the flow of air into the rooms using

dampers. The whole system is managed using a centralized Energy Management

System(EMS).

The Computer Science and Engineering building at UCSD consists of four

stories and a basement. The cold and hot water loop from the Central Utilities

Plant(CUP) provides the chilled water that acts as a heat exchanger to cool the

air passing through the air handlers. There are four large air handlers in the

basement of the building and provide the cool air using duct framework at 55◦F.

The whole building is divided into more than 300 thermal zones, each of which

can be controlled independently by the Energy Management System(EMS). As in

a typical system, each thermal zone is served by a VAV unit to control the amount

of air flow. As the air temperature at 55◦F might be too cold for some regions, a

facility for reheating the air is provided before it can enter the room. Each of the

rooms is configured with cooling and heating setpoint temperatures within which

the temperature of the room should be kept in. The cooling setpoint for the room

are statically set and vary from 71◦F and 78◦F (for storage rooms). Most rooms

are set to 72◦F. The heating setpoint varies from 66◦F to 68◦F, depending on the

room. The required air flow that the air handlers need to provide is controlled

by a PID controller using a pressure sensor in the main trunk of the air duct

as its feedback element. As additional VAV units release more cold air into the

building, the pressure drops in the air ducts forcing the air handlers to throttle

up. Conversely, as VAV dampers close, the air pressure builds up, signaling the
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air handlers to slow down.

All the buildings are managed by the Physical Plant Services(PPS) at

UCSD using the EMS. Each thermal zone in every building on the campus can

be controlled using a BACNet control network. This control network is centrally

managed by a Metasys ADX server which provides access to all of the elements in

the network. Thermostats have been installed in each zone, which give feedback

on the current temperature in the zone. There are three basic command modes

for each of these zones to the EMS - on, where air is released to allow the room

to satisfy its temperature requirements; stand-by, where a minimum amount of

air flow is maintained, and off, where the dampers are completely closed.

The building HVAC is scheduled statically with occupied mode starting at

5.15AM for the fourth floor, 5.30AM for the third floor, 5.45AM for the second,

and 6.00AM for the first floor. The start times of the floors are staggered to avoid

causing too much stress on the air handler units. The occupied mode lasts till

6.30PM, with stand-by mode set from 6.30PM to 10.00PM, and unoccupied mode

set from 10.00PM to 5.15AM. When the building is in unoccupied or stand-by

mode, occupants can turn on the HVAC by pressing a button on the thermostat.

A zone can consist of one to three rooms, and there is only one thermostat for each

zone. If an occupant does not have the access to the room that has the thermostat

for that zone, they will not be able to turn it on. The system is set to unoccupied

mode during the weekends.

The PPS people responsible for the HVAC systems have revealed interesting

details on how the system is optimized and can be improved to be more energy

efficient. The chilled water provided by the CUP is produced partly as a byproduct

of our campus natural gas fired plant, and is relatively inexpensive. So, the EMS

optimize the building HVAC system for cooling. Further, experience has shown

that over cooling, in general, generates less complaints than a hot building. The

air that flows from the air handlers through the ductwork is close to 55◦F, and

the VAV minimally reheats the air to save energy. The weather in our location is

mild and warm year-round, and the heating component of the HVAC network is

only put to real use during the colder days. The static schedule practiced has been
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put in place to best accommodate the diverse work times of the occupants, since

real-time reliable occupancy information is not available. This type of schedule is

common among modern buildings.

For our deployment, we were allowed to control only the 2nd floor of the

CSE building. This floor contains a total of 81 rooms and has a mixture of faculty,

graduate students and staff workers. There are 11 graduate students labs, housing

over 100 graduate students, which become occupied when the first graduate student

comes in (usually between 8.30AM and 10.30AM). There are 23 faculty offices, of

which four are unoccupied at present and eight are occupied only occasionally.

The occupancy of the remaining offices varies greatly depending on their schedule.

There are 11 affiliate offices that are occasionally occupied when affiliates come in

or when there is an event in the building. A total of 17 staff offices are present,

of which 5 are currently empty. Staff workers start entering between 8.30AM to

9.30AM and leave between 4.30PM to 6.00PM. The rest of the rooms include

1 classroom, 5 hardware labs that are occupied as needed, 2 computer labs, 4

conference rooms, 3 kitchenettes, and several equipment and storage rooms that

do not contain occupants. Each of these 81 rooms falls under one of 55 thermal

zones on this floor. The hallways are divided in to two zones, each of the labs and

conference rooms are in their own zone, several of the office rooms are also in their

own zone, and the remaining zones represent two to three office rooms.

3.2 Motivational Experiment

In the previous chapter, we saw that the CSE building has been specially

instrumented to provide us the breakdown of electricity consumption from different

type of loads in the building. Using this facility, we could measure the electrical

energy consumed by different components such as air handlers, pumps, fans and

actuators. To measure the thermal energy consumed by the HVAC system, we

have installed thermal meters on the inlets and the outlets of the chilled water

loop provided by the CUP. This thermal energy is measured in MMBTUs (Million

British Thermal Units) that can be converted to equivalent kW based on the
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Figure 3.1: Power consumption breakdown for our building. The HVAC electrical

load is between 25% to 33% of the total electrical load. The HVAC thermal load,

as expressed in kW equivalent of cooling, is also significant.

Figure 3.2: HVAC power consumption - Friday Oct 22nd to Sunday Oct 24th.

The first day is a regular day (Friday).The next 2 days we turn on the HVAC one

floor at a time – starting from 1st floor to all four floors at intervals of one hour,

repeating twice a day.

aggregate energy sourcing architecture as supplied by our campus energy managers.

Note that since the chilled water loop is produced partly as a byproduct of our

campus natural gas fired plant, the conversion factor into kW is an approximation

and should not be taken literally as the energy it would take to chill water using

electric power.

Figure 3.1 illustrates the power consumption of the HVAC system with

respect to the total power consumption. As we have seen from the trends in power

consumption from the previous chapter, the HVAC electrical loads rise rapidly

in the morning, stay high during the day and reduce gradually in the evening.

During this particular week, the HVAC electrical loads account for 25% to 33% of

the total electrical load of the building. The HVAC Thermal equivalent load (in
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kW) is also significant and follows a similar pattern as the HVAC electrical load.

The combined HVAC electrical and thermal load during nights and weekends is

due to the fact that a minimum air flow must be maintained for the basement

laboratories at all times. Further, the building has a small server room which

must be air conditioned at all times.

Figure 3.1 provides insight into the energy consumed by the HVAC system

in our building, giving us opportunity to study its contribution to the total en-

ergy consumption and where energy can be possibly saved. To save energy, we

planned to install accurate occupancy sensors in the individual offices and turn

off the air conditioning to the unoccupied zones. However, before undertaking the

effort of designing and deploying the system, we needed to know the amount of

energy savings that can be achieved by the system. If the amount of energy saved

is minimal compared to the total cost of the system, then the solution is not eco-

nomically feasible. We designed an experiment to find out the potential impact

the variations in occupancy have on the energy consumption of the HVAC system.

This would provide a bound on the potential energy savings a detailed occupancy

driven HVAC system may have.

The basic plan behind the experiment was to initially turn off HVAC in all

the four floors of the building, and then incrementally turn on the HVAC system on

each floor to see the change in energy consumption. We conducted this experiment

spanning three days - from October 22-24, 2010. Friday, October 22nd, was our

baseline day, and we actuated the HVAC on both Saturday and Sunday. We turned

on the HVAC on the first floor from 10.00AM to 11.00AM, the first two floors from

11.00AM to 12.00PM, the first three floors from 12.00PM to 1.00PM, and all four

floors from 1.00PM to 2.00PM. We repeated the same pattern from 2.00PM to

6.00PM. The weather for the two days were mild and typical of San Diego, with a

high of 77◦F.

Figure 3.2 illustrates the results of our experiment spanning the three days.

Both HVAC electrical and thermal loads have been shown for comparison. Friday,

our baseline day, was running the normal static schedule imposed by the EMS. We

can clearly see that the amount of energy consumed in both electrical and thermal
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Figure 3.3: Occupancy node deployed on the wall of an office. The reed switch,

PIR sensor and our CC2530 based radio module inside the occupancy node are

also shown.

load is monotonously increasing as the HVAC in each additional floor is being

turned on. It is interesting to note that the HVAC electrical load is increasing in

a step wise manner, and the step size increases as each additional floor is being

activated for cooling. This means that the closer the HVAC system is to maximum

cooling, the more expensive cooling each additional zone becomes. One possible

explanation for this is that the power consumed by the fans in the air handlers is

cubic with its fan speed. What this implies is that reducing HVAC loads during the

workdays for even a few zones can potentially have significant savings in energy.

In other words, the sensitivity of energy consumption to occupancy increases at

higher occupancy levels, making a very strong case for dynamic HVAC control.

3.3 Development of Sensor Nodes

In order to have a fine-grained occupancy based HVAC control system, it

is critical to have accurate, reliable and real-time occupancy information of each

zone in the building. Many modern buildings use Passive InfraRed sensors(PIR)

for sensing motion. However, these PIR sensors detect only motion, and can
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give inaccurate results. Thus, these are connected directly to the local lighting

fixtures and are rarely used for intelligent HVAC management. Other methods

for detecting occupancy that have been studied in the research area include sonar-

based methods [34] or camera based systems [35] that bring up concerns relating

to cost, deployment and privacy issues. Carbon dioxide sensors have also been

examined - the main limitations of these systems are that they are very slow to

respond in detecting the changes in occupancy and need to be calibrated for every

environment[37].

Objectives: A practical occupancy detection system needs to meet several

key design objectives. First, sensor nodes have to be as inexpensive as possible

to make it economically feasible to deploy them on a building wide scale. If the

cost of the sensors is high compared to the energy savings accrued by the system,

building managers will be reluctant to adopt the system, and the idea will remain

as a research project. Second, we wanted the system to be incrementally deployable

within existing buildings, without requiring large scale modifications such as new

wiring. Not only does wiring increase the cost of deploying the system, it involves

several hours of manual labor, requires design effort in retrofitting the wires into

the existent system and is expensive, if not prohibitive, to modify or repair the

system. Hence, it is imperative that the sensor nodes transmit the information

wirelessly. Further, wireless sensors allow us to easily experiment with the system

during the prototyping stage. Finally, the occupancy detection algorithms should

be very accurate since it is critical to minimize the errors when controlling the

HVAC system.

Sensors: We chose to use a combination of two sensors to deduce the

occupancy in a room - a magnetic reed switch to detect if the door is closed or

open and a PIR sensor module to detect motion. Figure 3.3 shows our sensor

module. The reed switch we have used is a normally open switch consisting of two

metallic plates that are close to each other. When a magnetic field is present in the

right orientation, the two metallic plates make contact, turning on the switch. This

switch is inexpensive and draws no current when the switch is open. When the

switch is closed, the amount of current flowing through the circuit can be controlled
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using a series resistor. We detect the status of the door by placing the reed switch

on the wall near the door and a small magnet on the door itself, as shown in Figure

3.3. The PIR sensor is based on a pyroelectric sensor which converts incoming

infrared radiation to electrical signals. Two such sensors are placed close to each

other so that a difference in infrared radiation in the environment can be detected.

A heat emanating body motion can be detected up to 10 meters away from this

sensor. A Fresnel lens is placed on top of this arrangement to increase the angles

of incidence captured by the sensor. The lens helps capture motion up to 120◦ in

the horizontal and 90◦ in the vertical directions. The exact angles depend on the

design of the lens. The differential signal is then amplified and processed to give a

digital signal.

Microcontroller: We chose Texas Instrument’s (TI) CC2530 as our mi-

crocontroller. This chip is a System-on-Chip (SoC) solution consisting of 2.4GHz

IEEE 802.15.4 Compliant RF Transceiver, an industry-standard enhanced 8051

microcontroller core, in-system-programmable flash, dedicated hardware for AES

encryption and TI’s software solution for Zigbee, called Z-Stack. The single pack-

age reduces both cost and form factor of the overall module. The 8051 core al-

lows us to easily detect the signals provided by the sensors using GPIOs (General

Purpose input/output) and apply our algorithms on them. CC2530 comes with

various sleep modes, which allows to optimize the performance for our battery

operated sensor nodes. We modified TI’s CC2531 USB Dongle reference design

for CC2530 and manufactured them for our sensor nodes. We chose this design as

it was compact and has a printed PCB antenna rather than a separate external

antenna. While this choice allowed us to reduce cost, it reduced the radio range of

the nodes. However, our experience with deploying them showed that the range

was sufficiently large for meeting our requirements.

Case: To house the entire module, we needed a case. To reduce the effort

of designing our own case during the prototyping stage, we chose to use readily

available Airwick motion sensing air fresheners. They have a PIR based motion

sensor in them and squirt the scent on detecting motion. We retrofitted our module

into this product by removing the liquid scent and stuffing it with our module
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instead. The PIR that came with the Airwick had good sensitivity compared to

some of the more expensive ones available in the market, so we re-purposed the

PIR circuitry to be used with the rest of our system. The case also came with

space for 3 AA batteries, which is perfect to power up the CC2530 module. The

total estimated cost of a single sensor node in quantities of 1000 is less than $15.

This includes the cost of the parts, casing, PCB fabrication and assembly.

Algorithm: The algorithm for detecting occupancy tries to use the sensors

judiciously. The reed switch is able to sense when the door is open or closed. Based

on the typical occupancy modalities of our building and other buildings around

our campus, we observed that almost everyone closes their office door when they

are either leaving for the day, or when they are going to be out for more than a few

minutes. Thus, our occupancy detection works as follows. When the door is open,

we mark the room as occupied. When a door closes, there are two possibilities.

Either the person closed the door and headed out (room unoccupied), or the person

just closed the door and is still inside the room (room occupied). If the PIR sensor

goes high, it means that there is still a person inside and we mark the room as

occupied. If the PIR sensor does not detect motion, then we decide there is no

occupant in the room. However, the PIR can be triggered by the motion of the

closing door itself, or from the rush of air that accompanies it. To compensate, we

have developed a simple algorithm that will ignore the first six seconds of pulses

from the PIR sensor and sample constantly for two seconds after that. There is

one scenario where we will incorrectly declare a closed room to be unoccupied. If

a visitor closes the door while the main occupant of a room is sitting relatively

still at his desk (like reading a book, or typing on his computer), the PIR sensor

will likely not detect movement and thus determine the room to be empty. To

account for this, we turn on the PIR interrupt whenever we mark a room as closed

and unoccupied. If we detect movement in the future, the CC2530 will wake up,

poll the PIR and check the resultant pulse pattern for occupancy. If it passes,

we determine the room to be actually occupied. Thus, there are three types of

messages the node can send with respect to occupancy - open-door occupied,

closed-door occupied, and closed-door unoccupied.



22

Wireless Network: We have chosen the ZigBee protocol as our choice of

the wireless network stack. We made this choice because it is the only protocol

which has been standardized by the industry, and is designed with the Smart Home

applications in mind. Further, the CC2530 chip has been designed with ZigBee as

an intended application. The Z-Stack implementation of Zigbee provided by Texas

Instruments has been ported to this hardware, reducing our design effort in the

process.

We have followed a star topology for our network. This topology serves our

purposes much better than a multi-hop mesh network. First, we intend to use the

same Zigbee network for all the smart building solutions. For this we would like

to make full use of the narrow bandwidth (256 kbps) provided by ZigBee. For

each hop, the throughput of the network decreases roughly by half. Second, since

we have building-wide Ethernet and WiFi, we connect the Coordinators of each

ZigBee network to this infrastructure, making the data collection and integration

relatively simple. In buildings without this infrastructure, a multi-hop network

might be the only choice. Third, because each star network is logically separate

from the other, we can reuse the channels as in cellular networks. We can also

have multiple star networks overlapping each other as long as they are on different

channels. Finally, it is much easier to deploy and maintain a star network rather

than a mesh network.

Each of the occupancy sensor nodes acts as an End Device in a ZigBee

network and communicates directly with its ZigBee Coordinator. The ZigBee

Coordinator is a CC2531 USB Dongle, similar to the end devices, with a small

form factor and a printed PCB antenna. The only difference is that CC2531

has a USB controller and can communicate with a USB Host directly. Each of

these USB Dongles are connected to inexpensive $100 Linux based plug computers

called the GuruPlug and SheevaPlug, both of which have a 1.2GHz ARM class

processor, 512MB of memory, flash storage, Ethernet and USB ports. We chose

the plug computers for their low cost, small form factor, low power (typically less

than 5W), the availability of several expansion ports and safety certification from

UL. We call the ZigBee coordinator + Plug computer as our “basestation”. Each
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basestation is connected to the Ethernet infrastructure of the building.

Our preliminary experiments showed that the range of the sensor nodes

was close to 20 meters line-of-sight and spanned close to 10 rooms in one corridor

of the building. We deployed a total of nine basestations to cover all the dead

spots in the network and span the entire 2nd floor of the building. We configured

our occupancy nodes to automatically connect to the nearest basestation with the

correct extended PAN ID and to start sending data to its parent. Using the Zigbee

stack allows us to leverage many of the features of the stack, such as authentication

and AES encryption for security. Once the wireless nodes are connected, the nodes

will send even messages whenever an occupancy event happens. In addition, the

nodes transmit a heartbeat message every 15 minutes so that the base station and

central server can determine if a node has fallen of the network. This heartbeat

period can be made even longer to conserve energy and further increase node

lifetime.

Power Characterization: An important design goal for our wireless oc-

cupancy node was to make it battery powered, necessitating aggressive energy

management. Our choice of using the CC2530 was in part because of its low power

consumption. However, since our occupancy node combines several sensors with

the CC2530 we wanted to accurately measure its power draw in different modes

and estimate total battery lifetime. We use a high sample rate Data Acquisition

card from National Instruments USB-6210 to measure the total current draw across

a sense resistor, and consequently calculate the power draw. The maximum cur-

rent draw is 30mA during data transmission. The CC2530 supports multiple sleep

states, the lowest of which consumes less than 0.045mA. All current measurements

are at 3.6V. The average daily energy consumption depends on various factors that

determine which power state the occupancy node is in. Assuming a periodic heart-

beat of once every 15 minutes and over 100 occupancy events transmitted per day,

we calculate the total energy drain to be 3.37mAh. Assuming standard alkaline

batteries with a life of 2850mAh, this current draw translates to a lifetime of over

2 years. The low power draw of our occupancy sensor makes it perhaps possible to

employ energy harvesting using indoor solar cells, and use super-capacitor based
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Figure 3.4: Implementation Diagram.

designs to makes these nodes almost perpetually powered[5, 31].

3.4 Development of Actuation System

The base stations send the wireless sensor data along with the status mes-

sages to the central server, which we call the Occupancy Data Analysis server

(ODAS). The core component of the server software is the database that stores

the information and a collection of Python programs that read from the database

and perform actuations based on the data.

The ODAS is connected to a Windows server machine that runs an OPC

tunneler. OPC is a common standard that allows for process control and com-

munication between industrial devices. This machine is connected directly to two

OPC Data Access servers managed by the facilities group on campus, with one

providing real time energy usage data in our building, and the other providing

access to the BACNet network. We developed OPC client applications to interface

with the OPC servers and obtain the data points that we are interested in, which

include temperatures for each thermal zone and energy usage of the HVAC sys-

tem. In addition, we were given write access privileges for setting the occupancy

command for each zone in the building.
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Our ODAS runs a process that retrieves this data (zone temperatures) from

the Windows server and stores it in the ODAS database. It is important to note

that the temperature readings can be delayed for up to 10 minutes. To control the

building HVAC, the ODAS sends a zone HVAC command (e.g. turn zone 2121

to unoccupied) back to the Windows server. The actuator OPC client application

will scan incoming commands at a rate of once a second to see if a new one has

arrived. If so, the actuator client will write the appropriate value for the OPC item

to the BACNet OPC server. The BACNet OPC server has a higher priority than

the static schedules, which allows it to override any previous command. (Higher

priorities do exist, such as for emergencies). This set up provides us with an ideal

test bed to experiment with different HVAC control algorithms revolving around

using occupancy information along with other information sources. Figure 3.4

shows our overall system design with the individual components marked.

The ODAS database comprises of several tables for our HVAC control in-

cluding ones that contain all of the rooms on each floor, the thermal zones, map-

pings between rooms and thermal zones, and temperature of each zone. Using this

information, our HVAC control algorithms improve upon the static schedules set

by the facilities management. Due to our location in a mild climate zone, typical

days generally do not exceed a high of 76◦F (except in a few weeks during the sum-

mer). Temperatures do not get very low either, with lows of the mid 50s. When we

looked at the indoor temperatures for each zone during a normal warm weekend,

we noticed that even with HVAC off, most of the rooms would not go above 75◦F.

The exception was one set of sparsely occupied offices on the wing facing the sun

containing some IT equipment. These offices would climb up to 77◦F, even on mild

days, due to the solar effects and the heat-generating computers.

Our HVAC control system implementation comprises of several programs.

The first program checks the occupancy of every zone and will turn-off (or put

into stand-by) zones that are currently unoccupied. We rate-limit this to once a

minute in order to prevent thrashing for the dampers. Damper power consumption

is, however, quite low measuring around 100W over 20 seconds. In addition, we

have a program running that will check the temperature for every occupied zone
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Figure 3.5: Accuracy test of three representative rooms over seven hours.

and will turn on the HVAC if the temperature goes over 76◦F or under 66◦F.

3.5 Evaluation

We now evaluate our test deployment for accuracy of occupancy detection,

show how occupancy patterns vary across people, and demonstrate the potential

energy savings for running our dynamic HVAC control scheme.

3.5.1 Occupancy - Accuracy and Patterns

For checking the statistical accuracy of our system, we compared the data

given by the occupancy server to the actual occupancy in rooms. The ground truth

measurements were done manually, by checking each office in the floor every fifteen

minutes. The data was collected over a period of seven hours. Figure3.5 compares

the ground truth and sensor measurements of three representative rooms. It should

be noted that this does not cover all the cases discussed earlier. We can see that

the sensor nodes capture the data fairly well. The inaccuracies occur because of

the reasons discussed in Section 3.3. Statistically, of the 33 nodes we tested, 29

nodes showed an accuracy(with respect to time) of 96%. The four exceptional
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Figure 3.6: Occupancy for a representative set of seven occupants across four

days. The data shows significant diversity in their occupancy patterns.

nodes had a high degree of inaccuracy because the sensors were placed too close

to the door, causing false events to occur due to gusts of air during door events.

We had calibrated the PIR sensors to be sensitive to even small movements in the

room, and this resulted in no false negatives. Thus, a person is never detected as

absent when he is present in the room, causing no discomfort because of sensor

inaccuracies. However, we do waste energy when a vacant room is detected as

occupied.

Our occupancy data reveals several interesting trends. It is important to

note that as this is a building on a university campus, occupancy patterns are ex-

tremely dynamic when compared to a typical 9-5 office building. Figure 3.6 shows

occupancy patterns of seven representative rooms over four days. We can observe

that the staff worker has a fixed schedule from 8:30AM to 4:30PM every day. The

ad hoc meeting room (that is often times not used) was empty during these 4

days. The faculty and post doc have sporadic occupancy patterns, mainly because

of different commitments outside of their offices. The gaps in the occupancy of the

graduate student perhaps indicate that he/she was attending classes.
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Figure 3.7: The energy consumption of HVAC during our baseline day. We show

HVAC electrical loads as well as the HVAC thermal loads for both cooling and

heating (as equivalent kW).
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Figure 3.8: The energy consumption of HVAC during our first test day. The

HVAC-electrical savings compared to baseline shown in Figure 3.7 are 11.59%

while the HVAC-thermal savings are 12.41% and 9.59% for cooling and heating

loads respectively.
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Figure 3.9: The energy consumption of HVAC during our second test day. The

HVAC-electrical savings compared to baseline shown in Figure 3.7 are 9.54% while

the HVAC-thermal savings are 12.85% and 11.51% for cooling and heating loads

respectively.
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3.5.2 Energy Savings

To study and evaluate how much energy we can save by duty-cycling the

HVAC system, we controlled the thermal zones in the second floor of the CSE

building for four different days, two each in fall and winter seasons. This was to

study the effect across variations in the same season and across different seasons.

The first set of experiments were conducted in the fall on October 27th(Wednesday)

and 28th(Thursday), and the second set of experiments in winter were on February

23rd(Wednesday) and 24th(Thursday). In the first set of experiments, which we

call the Fall Experiments, only half of the rooms on the second floor were covered by

the occupancy nodes. These rooms were duty-cycled according to their occupancy,

while the others were set on static schedules. During this set of experiments we were

aggressive, and turned on the HVAC between 8.45AM and 10.00AM depending

on the arrival time of the occupant. In the second set of experiments, we were

able to cover 75% of the whole floor, the exceptions being unoccupied rooms and

people who were uncomfortable with the sensors because of privacy concerns. For

the latter rooms, we ran the HVAC on the standard static HVAC schedule from

5.45AM to 10.00PM.

Running the experiments over these two seasons also offered us the oppor-

tunity to determine how our system is affected by different outside temperatures.

The fall season in San Diego is fairly warm, while the winter/spring season is fairly

cool. In the former, the main mode of operation is in cooling the building, while in

the latter it is in both warming and cooling the building. In both cases however,

the mild temperature and modern building enclosure meant that even without

HVAC, temperatures never got too extreme.

It should be noted that a strict comparison between two days is not possible,

as the occupancy levels and environmental conditions vary from day to day. The

measurements from two consecutive days gives us a fair idea of the energy savings

across these variations to some extent.
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Fall 2010 Experiments

Because the offices often had moderate indoor temperatures, we were ex-

tremely aggressive in reducing HVAC loads for our first test day. Of the rooms

that we were unable to deploy our nodes, we either set the HVAC to on or off for

the entire day, depending on whether the rooms were currently vacant (or vacant

for the day). For rooms that were occupied, we set their occupied commands at

a time closer to when the occupants arrived (instead of 5:45AM), usually between

8:45AM to 10:00AM depending on the room.

For the rooms that had our occupancy sensors installed and were in their

own zone, we simply cycled the occupancy command based on actual room occu-

pancy. However, larger zones that contained multiple rooms were more challenging

to control, and here we opted to save energy. If the other occupants of the zone

stated that they felt the cooling was too high, we simply put the HVAC to stand-

by when one occupant was gone. Combined with the fact that cooling from other

zones would seep in anyway, and the fact that the days rarely got hot, we believed

that it would be enough to maintain comfort. For unoccupied rooms, we simply

turned off the HVAC. After we ran our experiment on our first day, we changed

our control procedures to opt for a more conservative approach on the second day.

The first test day was typical for the location, with mild temperatures and

a high of 75◦F. The second day was warmer, hitting a high of 82◦F. Comparing en-

ergy consumption for HVAC across multiple days is difficult, as the exact weather

patterns are difficult to reproduce, and HVAC loads are directly impacted by tem-

perature and solar radiance. However, aside from this difference, a reasonable

comparison across multiple days can still be made. Our test days were on October

27th (Wednesday) and October 28th (Thursday) of a typical work week, and we set

as our baseline October 25th which falls on the Monday of that same week. This

day has a fairly representative HVAC energy pattern for a mild day in our location,

with a high of 73◦F. We note that this baseline day was much cooler than our two

test days, therefore our energy savings are somewhat conservative and would have

been even higher had we compared with a similar warmer day. Figure 3.7 shows

the HVAC energy trace of our baseline day, including both electrical consumption
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of the air handlers as well as the thermal loads for the building (given as equivalent

kW). As mentioned earlier, equivalent kW is merely an approximation, and should

not be taken as an exact conversion.

Fall 2010 – Day 1 Results

Figure 3.8 shows the HVAC power consumption traces for test day 1 (Oct

27). The graphs show the energy consumed by the entire building’s HVAC system,

not just the second floor (which we controlled). A normal static schedule day will

start up the four floors in sequence starting at 5:15AM (for the fourth floor) until

6:00AM (for the first floor). A close look at the comparison day (Figure 3.7) from

5:15AM - 6:00AM shows the spikes that each floor causes. The effect on energy

consumption is apparent, as the average power consumption hits past 100 kW.

The rapid succession of open dampers causes the air handler to have to ramp up

its fan speed, and this causes an even greater energy load.

For our test day 1 control scheme, we actually started our energy control

scheme for floor 2 at 6:05AM since we wanted the normal initialization procedures

to start up first. At 6:05AM our control commenced. Because it was before 6:30AM

(the earliest time that we set for HVAC initialization), the system immediately

set all the second floor zones to unoccupied. The energy savings this had were

surprising. Rather than seeing energy consumed go up to an average of over 100kW,

the energy consumed only went up to 80 kW, and settled down at an average 68kW

for the morning. At 6:30AM our system went to “on” mode, which meant that

it will only turn on the HVAC when the occupant arrived (for rooms that have

the occupancy sensor), or at a later time that we set statically (typically 8:30AM

to 9:30AM, based on when we observed the room usually becoming occupied).

Starting at 8:00AM more rooms became occupied, and at 8:30AM the rest of the

rooms (ones that we did not sense) were turned on.

The energy consumption rose as the day went on, but was still 5kW to 10kW

less than the comparison day until the mid-afternoon (around 3PM). The effects

from duty cycling (setting rooms to unoccupied mode when they were absent) had

some effect, but the occupancy patterns for many rooms were quite static (long
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periods of occupancy). Even when multiple rooms were part of the same zone, our

control scheme would opt to set the entire zone to unoccupied until it hit 75◦F

when we would turn the HVAC on. Many of these staff rooms however were not

facing the sun in the afternoon, and therefore actually never went that high.

The late afternoon also showed a period of significant savings. Staff workers

tended to leave from 4:30PM to 6PM. The normal schedule system puts all the

floors into standby mode at 6:30PM, whereas our control scheme started labeling

rooms as unoccupied when they left. The effects are significant, as due to our

control the HVAC loads started dropping towards 80 kW at 5PM. In comparison,

the static schedule averaged over 90 kW until 6:30PM.

The total HVAC electrical load for test day 1 was 1556 kW-H. The total

HVAC electrical load for the baseline day was 1760 kW-H. Therefore, in terms

of electricity, our HVAC control scheme saved a significant 11.59%, despite only

controlling one floor in a four floor building. We also note that the thermal load

consumption was less than the baseline as well, saving 12.41% in thermal cooling

loads and 9.59% in thermal heating loads (results summarized in Table 3.1).

Fall 2010 – Day 2 Results

The first day we were very aggressive in cutting off HVAC cooling to as many

rooms as possible. However, given that we did not actually detect occupancy in

half of the rooms, setting them as completely unoccupied could have potentially

unintended consequences in terms of higher temperatures if an occupant did hap-

pen to come into that room. Therefore, for day 2, we ran a less aggressive cooling

control pattern where we would actively monitor the temperature and turn on

cooling whenever the temperature would rise past 75◦F, regardless of whether or

not we had a sensor node in the room or not.

Another change was to start the day off with full control, as opposed to

letting the normal static procedure initiate. This meant that the entire 2nd floor

would not be set to occupied at 5:45AM, and instead be turned on at 6:30AM. The

effects of this were immediate, as the average power consumption hovered near 80

kW for most of the morning. As the second floor started to become occupied, the
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Table 3.1: Fall Tests - Energy consumption for electricity and thermal cooling

and heating (as equivalent kW).

Day Electricity Cooling Heating

Baseline 1760 kW-H 4302 kW-H 2877 kW-H

Day 1 1556 kW-H 3768 kW-H 2601 kW-H
Day 1 Savings 11.59% 12.41% 9.59%

Day 2 1592 kW-H 3749 kW-H 2546 kW-H
Day 2 Savings 9.54% 12.85% 11.51%

power rose to an average of 100 kW, not entirely dissimilar to our baseline day.

However, looking closely, we observe that the average power consumption of test

day 2 was still slightly lower than the baseline day. Similar to test day 1, energy

consumption started falling rapidly as the work day ended.

The total energy consumed for test day 2 was 1591.68 kW-H. Test day

2 was also much warmer, resulting in higher than normal HVAC loads, but our

conservative approach likely added additional energy consumption over test day 1.

Compared to our baseline day, test day 2 saved 10.5% in electricity. We observed

12.85% savings in thermal cooling loads, with the savings mostly concentrated in

the morning, and 11.59% in heating loads. Table 3.1 shows the results for test day

1 and test day 2 compared to our baseline day.

Additional Observations for Fall 2010 Tests

Looking at the fall results, it is clear that a significant source of the energy

savings comes from starting the HVAC when the users arrive rather than as early

as 5:45AM. A side benefit of this is that the load on the air handlers is more

staggered. Since our building is located in a mild climate zone, it is not necessary

to aggressively pre-cool, however in other climates, we would opt for a learning

algorithm to predict when users arrive and initiate cooling accordingly. Since

occupancy patterns for a given individual tend to be similar, this is likely to be an

effective strategy.

We also note that occupancy patterns tend to disallow a great deal of online

duty cycling, as people tend to be in their offices for long periods of times. This
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Figure 3.10: Effect of actuating HVAC for an IT-heavy room facing towards the

sun during a warm day.

is especially true for the graduate laboratories, which always had some occupants

throughout the day. The effects on air flow when one zone is being cooled and

another is also significant and these thermal effects may have a non-trivial impact

on overall energy consumption.

It is important to factor in the effect on temperatures through the zones.

One interesting observation was that the location of the room significantly affects

how warm it will be. As mentioned previously, one side of the wing of our building

faces the sun during the afternoon, and thus gets much warmer than the other

rooms. We noticed that the majority of the other rooms would stay constantly

under 75◦F even with the absence of cooling, but these rooms would rise to 77◦F

during the afternoons. We ran an experiment to control the HVAC in one of these

unoccupied room with several computers. Over the course of a warm day, we en-

abled and disabled HVAC to see how temperature rises and falls, and importantly,

how quickly the temperature adjusts. The temperature readings are read from

the BACnet OPC DA server and thus exhibit some amount of delay and discrete

jumps.

Figure 3.10 shows how this particular room reacted to the turning off and

on of the HVAC over the day. The HVAC system was able to send a significant
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amount of cold air into the room to rapidly cool it to acceptable temperatures.

We note that it takes less than ten minutes for the HVAC system to cool the room

below 75◦F. This suggests that allowing temperatures to float will have minimal

impact on comfort levels; the effect of this scheme on energy consumption however

still needs to be studied further. We do note that the cold air in the ducts is at 55◦F

normally, and is reheated to maintain temperatures in each zone. When a zone is

warm, the reheat required is reduced. This suggests that cooling a warmer room

might not significantly impact HVAC energy consumption more than maintaining

a room at its setpoint.

Spring 2011 Experiments

We ran our HVAC control experiment again in spring 2011, and were able

to achieve a much larger deployment of occupancy nodes. We also adjusted our

test parameters based on our discoveries from the first set. Since we had a much

better deployment, we were able to monitor most of the rooms, including some

unoccupied rooms, and actuate based on that. We adjusted the timing and opted

for a later start time of 8:45AM to turn on the common areas and unmonitored

offices, as this was when most people came in. Rather than turn off HVAC as

in our first set of tests, we opted to put unoccupied zones to stand-by instead

to maintain some airflow. We also were more conservative with placing zones to

unoccupied for this set of tests as we had more monitors - if a single room in a

zone was occupied, we turned on the HVAC.

For this test, our baseline day was February 17th (Thursday) of a typical

work week. It was mildly cloudy with temperatures ranging from 53◦F to 62◦F.

Our test days were Feb. 23 and 24, days with similar weather to the baseline day.

The temperature on Feb. 23 varied between 54◦F to 63◦F, with the temperatures

not varying by more than 3◦F between the two days. The weather on Feb. 24

was generally cloudy, with temperature varying from 51 deg F to 60 deg F. The

weather was much colder than the fall tests, meaning we would be able to test

how our system handles conditions where it must sometimes warm rather than

cool. From observing the data over the previous weekends, we noticed that the
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temperatures in the building would typically range from 65◦F to 73◦F when the

HVAC system was completely off.

Spring 2011 Results

Due to lack of space, we were unable to include the spring 2011 graphs, but

the summary of our spring results is listed in Table 3.2. Comparing the HVAC

electrical load on the test day with that on our baseline day, we see that the load

increases more gradually during our experiment days. The load at 6AM on the

test day is 70kW compared to 105kW. The load increases slowly to 105kW at

about 8:30AM, while it remained constant during this period on the base day.

The peak load on the test day was 165kW compared to 180kW on the baseline.

The power consumption starts decreasing at 3:30PM compared to 4:30PM on the

baseline. It remains at 120kW until 6PM compared to 140kW, mapping closer

to the occupancy levels in the second floor. The total energy consumed by the

HVAC electrical on the test day was 1977 kWh compared to 2187kWh on the

base day. The energy saved during the period was 9.60%, with similar savings

in thermal-cooling. Thermal heating energy consumption was almost the same

however.

The second day had similar temperatures but was more overcast. The

HVAC electrical consumption stabilized around 75W at 6AM, and stayed there

until 8:15AM. The power consumption then started to increase gradually until it

reached a peak of 145kW at 3:30PM. The total HVAC electrical power consumption

for the day was 1843 kWh. We saved 15.73% compared to the baseline day. This

day was cooler however, which meant that reducing the HVAC would save more

in energy because of less heating.

As our original system was designed for warm days, running it on a colder

day proved enlightening. Temperatures in the 60s is about as cold as it gets in

San Diego, and thus our building was forced to warm the rooms. We did notice

though that rooms got as low as 66◦F in the morning. Rooms where HVAC was

turned on were warmer at about 70◦F-72◦F, while rooms that had HVAC turned

off were cooler at about 67◦F-69◦F in the late mornings. By the afternoons, most
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Table 3.2: Spring 2011 Tests - Energy consumption for electricity and thermal

cooling and heating (as equivalent kW).

Day Electricity Cooling Heating

Baseline 2187 kW-H 3137 kW-H 2124 kW-H

Day 1 1977 kW-H 2885 kW-H 2128 kW-H
Day 1 Savings 9.60% 8.03% -0.18%

Day 2 1843 kW-H 2899 kW-H 2021 kW-H
Day 2 Savings 15.73% 7.59% 4.85%

of the rooms were above the heating setpoint and some were even being cooled. In

retrospect, we perhaps needed to better optimize heating strategies, as pre-heating

is perhaps more important than pre-cooling for these situations. It would also

have been instructive to take into consideration warm air spreading from warmer

zones to non-warm zones. We did not however receive any complaints about the

temperatures; the people we asked did not even notice any change.

3.6 Future Work

A major criticism of our work is that we do not predict the arrival of a user

using his/her past patterns and preheat the room proactively. We have shown

that it takes less than 10 minutes to cool the room below 75◦F, and keeping the

room warm may actually help in reducing the amount of reheat required by the

VAV in Section 3.5.2. However, this solution may not be amenable in a harsher

climate, like in Chicago or Houston, and an adaptive prediction method needs

to be in place so as not to disturb occupant’s comfort. Erickson et al [11] have

done a detailed simulation study of effect of ventilation in different environmental

conditions and how much occupancy information can help us save energy using

predictive strategies. To make our system deployable at other places in the country,

we plan to incorporate such machine learning mechanisms in the future.

Another important characteristic of our system is that our occupancy sen-

sors only provide binary occupancy information. An ideal occupancy system should

be able to tell how many people currently occupy the room, or atleast have a mea-
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sure of the number of people in coarse granularity. Erickson et al[11] do a detailed

study on the differences between the systems which have binary information and

those which have a measure of the number of people in the room. In our HVAC

system at CSE, we let the PID based control system to handle the amount of air

to let in to the room. Thus, the amount of ventilation gets automatically adjusted.

However, such a system may cause discomfort in the room if the number of people

in the room changes drastically in a short amount of time. We have only one

classroom in CSE that fits this pattern, and can add exception for the same. A

building consisting of large number of big rooms, however, needs to have a people

counting mechanism in place. We are also working on appropriate solutions for

the problem.
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Chapter 4

Plug Load Management

Plug loads of a building constitute another major chunk of the total building

energy consumption. A look at the Energy Dashboard tells us that they constitute

between 29% to 36% of the total electricity consumption of the CSE building on an

average day. If we remove the contribution from the constant base load provided by

the machine room (which is the case in a non-IT building), the energy demands of

the plug loads become even more prominent. Figure 4.1 illustrates this by deleting

the contribution from the servers. The plug-loads account for 41% to 67% (average

55%) of the total power consumption, over a two week period in January 2011.
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Figure 4.1: Electrical power usage breakdown for a typical building over two

weeks in January 2011. The building has a small server cluster which is metered

separately and is not shown in this graph.

Further, we can see from the Figure 4.1 that the baseline consumption of

the plugloads is fairly high at 61% of the total plug load power. This indicates

39
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that majority of the machines remain on even during the night and weekends,

showing that potentially we can save a lot of energy if we manage our loads effec-

tively. Managing plug loads is a difficult problem, as there are many types of loads

involved, distributed across the building and controlled by different owners. Com-

pare this with the HVAC system, which is a single system for the whole building

and centrally managed by the building managers. As the building managers can

see only the overall plug load consumption, they can do little to control, or even

account for, this portion of the energy consumption to the building. Moreover,

individual occupants have little feedback on how much they are contributing as

an individual to the total system power, and thus, have only a vague idea of the

impact of using energy saving solutions. The research community has identified

this need as early as 1992, and has come up with solutions to attribute energy

to the individual loads[15]. This technique, called Non-Intrusive Load Monitor-

ing(NILM) uses a single energy meter for the entire building, or a subsystem, and

applies signal processing on the acquired signals to deduce the power consumed by

each appliance. On the other hand, energy meters can be designed for each plug

load, and deployed across the building to measure the energy consumed. Several

research efforts have concentrated on this solution as well[18, 19, 21, 25]. The

main argument against the plug load energy meters has been that it is expensive

to deploy for all the loads in the building. Thus, we have developed our own Smart

Energy Meters(SEM) which are designed to be inexpensive (BoM of less than 15$),

with several improvements over previous designs.

Measuring alone, however, only allows us to observe the power consumption

patterns of an individual load. The best the user can do to actually save energy

is to switch to more energy efficient appliances, or even change his/her behavior

to manage their devices more efficiently. This involves considerable effort from

the part of the user - from putting in financial effort to changing his behavior

patterns. To reduce the discomfort caused to the user, and to manage energy

consumption more effectively, we need automated solutions. This will lead to wider

adoptability of the solution. To achieve this, actuation of plug loads becomes a

critical component of the system. However, actuation of plug loads can be difficult
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as every appliance has their own characteristic, and may need to be shut down

gracefully. A classic example is the desktop computer, which cannot be turned off

by cutting off the power as it can lead to data loss and/or can bring the system

to an inconsistent state. Thus, we have integrated a relay in our SEM to actuate

devices and developed a signature detection mechanism, which allows us to identify

the class of device plugged in. This allows us to identify the loads which can be

switched off without any repercussions, and build automated solutions on top of

the energy meter.

Using the SEM nodes, we have built a comprehensive centralized system,

called the “Energy Auditor” for energy analysis and management. Each of the SEM

nodes are capable of wirelessly sending the data using the ZigBee protocol, and we

leverage the backend system we built for our occupancy based HVAC system to

collect the data. The Energy Auditor engine then analyses this data and provides

a management framework for both the building manager and the end user. The

Energy Auditor has a storage component to store the energy data, a visualization

component to display personal and aggregate energy use to occupants and building

administrators, and various analysis engines to compare energy use across time

and across spaces. For individual building occupants the Energy Auditor provides

actionable items on how they can be more energy efficient. On a larger scale it

provides powerful knobs for energy managers to control the overall building energy

consumption. We have implemented the Energy Auditor to be extensible with

multiple management modules to control the energy consumption of plug loads.

These management modules can represent an expressive set of policies for energy

management such as reducing energy waste (turn off things that are not needed

in unoccupied offices), unauthorized load detection (space heaters) and deal with

demand response events (turn off non-essential loads in cases of emergencies).

4.1 Background

At the center of every energy accounting solution is the technology to mea-

sure the power consumed by individual appliances in the building. A central
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approach to study the power consumption of the plug loads in a building is Non-

Intrusive Load Monitoring(NILM) [15]. A high precision energy meter is placed

at the main circuit of the building, and the power values are measured at a very

fast sampling rate. Signal processing is done on the acquired power values to dis-

tinguish between the power consumed by the various loads in the building. The

basic concept behind the idea is that as different devices are turned on at different

times, their characteristic waveforms can be distinguished from the overall power

consumption waveform during their startup sequence. The major drawbacks of

this system is that it requires training for every device and thus becomes difficult

to distinguish between appliances when multiple switching takes place and when

there are many devices of similar type (for example, 30 computers in a lab). To

overcome the disadvantages, researchers have come up with additional solutions

which will help augment the NILM solution. Rowe et al[32] senses the electrical

and magnetic flowing through the power lines of appliances to detect their state,

and augment this information with the central meter. At the Flick of a switch

and ElectriSense[14, 29] sense the EMI interference caused in the powerlines of the

circuit whenever a device changes state. Recently, Jung et al. [20] have investi-

gated the use of binary state sensing (on/off) of different loads combined with an

incremental deployment of energy meters to perform energy disaggregation. All

the above methods make the NILM methodology more accurate but still require

a training phase. Furthermore, if we need to actuate appliances, we still need to

have controllable switches for each of the appliances.

A more distributed and direct approach is using energy meters that are

placed inline between the power cord and the power supply of the appliance. This

methodology gives more accurate values and the actuation facility can be built

into the meter. Academic energy meters include the ‘Plug’ from MIT[25] and

ACme from UC Berkeley[18]. The Plug is a powerstrip model with additional

sensors to measure the environmental context like light and sound. The project

concentrates on correlating the sensor signals with the power values and device

state. ACme is a plug load meter designed to scale in a building environment.

It uses 6loWPAN, an IPv6 based sensor network protocol, on top of a TinyOS
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platform. The major drawbacks to these solutions are that the individual meters

are too expensive to deploy on a wide scale and do not have reliable actuation

capability. Commercial solutions include the Kill-a-Watt, WattsUp[38], Current

Cost[6], the Energy Detective[36] and many others. The typical device comes with

an LCD screen showing the real-time power consumption. More modern devices

come with proprietary wireless solutions meant to scale for home buildings. We

have not seen a commercial solution which scales to a commercial building with

actuation capability.

Using these measured energy values forms another critical part of the sys-

tem. Several visualization solutions have come up in the recent past to provide

feedback to the user on their power consumption - Google Power Meter[13], Mi-

crosoft Hohm[27], the GreenSoda project using the ACme meters[18, 19], PowerNet

from Stanford[21] and our Energy Dashboard for UCSD. Most of the above visu-

alization tools export a standard API so that they can pull the data from any

energy meter which can deliver the data in the format required[28, 7]. Hay et

al[16] provide a case for why personal apportionment is necessary to save energy in

a commercial environment. To identify the users automatically and to apportion

the energy usage to them, researchers have developed identification of different

users in the building using their height differences[33] and analysing their network

activity[22]. Previous work has also tried to make certain subsystems more energy

efficient. Delaney et al[8] show that 50% to 70% of energy savings can be accrued

by using Wireless Sensor Networks to control the lighting system. Somniloquy and

SleepServer[1, 2] from our lab have addressed the power consumption of IT loads.

4.2 Smart Energy Meter

At the center of our Energy Auditor is our Smart Energy meter (SEM).

While there are already several commercial[38] and research[18, 19, 21] plug-load

meter designs, we wanted to develop our own design with several unique charac-

teristics. First, we wanted to make our SEM specifically low-cost and target a $15

bill of material. Second, we wanted the energy meter to utilize Zigbee since it is
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an industry standard protocol and interfaces with our Occupancy based HVAC

system. We describe the hardware and software components of our meter and

focus on how it contains the mechanisms that help facilitate the additional func-

tionality. Low-cost and wireless communications are essential because the primary

limitations against using individual plug-load meters are the cost of the meters

and the deployment expense. Next, we wanted to make actuation capabilities a

key component of our SEM such that electrical loads could be powered on/off. To

make the actuation capabilities even more effective, our SEM has detection and

classification capabilities to determine the load type– for example whether the load

is a lamp load, a fan load, a Desktop PC, or load that is battery powered such as

a laptop or a cell phone charger. By design since our SEM is single outlet which

can be independently measured and actuated we do not have to deal with complex

load disambiguation where multiple loads are connected to a central point of energy

measurement [32, 15, 14, 29]. The SEM also stores a load class attribute, similar to

priority levels, which is useful for policy based actuation such as demand-response

– for example a policy that turns off all non-essential loads during an emergency.

While previous energy meters have proposed actuation capabilities they have been

utilized to a limited extent[38, 18], we show how actuation can be used in a variety

of smart building scenarios. In terms of communication, the SEM conserves net-

work bandwidth by employing multiple levels of compression. It can either average

data and send periodic values, or send data only when it changes based on a set

threshold, or can send data at every second for real time access. Finally, our SEM

is extensible with local processing capabilities for any further enhancements.

4.2.1 Hardware Design

The SEM node comprises of essentially five components: voltage and cur-

rent sensing circuitry, energy measurement and accounting unit, power supply unit,

wireless radio, and a relay for switching the load on or off. The overall logical lay-

out is shown in Figure 4.2. At a high level, the voltage and current sense circuitry

is responsible for converting the line level voltages and current measurements to

appropriate levels for sampling by the energy metering IC. The energy metering
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Figure 4.2: Picture of our energy meter with various components marked.

IC then calculates various parameters, such as power and power factor and also

maintains averages over time. These average values are then transmitted to a base

station over a Zigbee wireless radio. The mechanical relay is also connected to the

energy metering IC and can actuate the electrical load plugged in to the energy

meter.

Each of these components however needed to be designed carefully based on

experimentation with different alternatives and several important considerations.

Overall, we designed our SEM to be inexpensive and compact thus using the least

amount of space possible while addressing safety considerations. For the current

and voltage sense component we used a simple sense resistor (4 mohm/4W) based

design since it is cost effective, occupies a small footprint on the PCB and can

accurately help measure real and reactive power. ACme [18] provides a good

comparison of various design alternatives for current and voltage sensing, with

advantages and drawbacks listed. We chose to connect the sensor resistor to the

neutral line as opposed to the live wire[18] for safety considerations – we tie the
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ground to the neutral line thereby preventing the entire ground plane from floating

at a 120VAC level. The drawback of using neutral side metering is that we were not

able to use the additional tamper detection functionality available in our energy

metering IC. We use a 1000:1.5 voltage divider, after spike suppression circuitry,

and feed that to the voltage measurement pins of our energy metering IC.

We use the MSP43042x2 as our energy metering IC (Figure 4.2). This chip

from Texas Instruments provides an Analog Front End (AFE) which samples the

voltage and current signals using a high-precision 16 bit ADC at 4000 samples

per second. This IC internally multiplies and processes these samples to provide

RMS voltage, RMS current, active power, reactive power, power factor and energy

consumed into designated registers periodically. The IC also contains an MSP430

core, which is a 16 bit RISC processor with up to 32KB of flash and 1KB RAM.

The MSP430 also provides an USART interface and a number of GPIO pins. An

alternative was to use a dedicated analog front end IC, like the ADE7753[18, 21].

However, we chose the MSP since the additional processing capability allowed us do

all the required processing in a single IC and get rid of a dedicated microcontroller

for this purpose, saving us both cost and space. The USART of this IC is connected

to a CC2530 radio. One of the GPIOs of the MSP430 is used for switching the

load using a mechanical relay.

We experimented with different solutions for switching electrical loads. Our

earlier design used a compact solid state relay (SSR) similar to the ACme design.

SSR solutions dissipate a large amount of heat, which was around 15W at a large

1.5kW load thus requiring a careful design of a large heat sink. To save cost and

also improve safety, our current design uses an electromagnetic relay (G5CA from

Omron) instead (Figure 4.2). The part is UL recognized for switching 15/125VAC

loads, general purpose usage, and consumes only 200mW at peak load. We further

isolated the electromagnetic relay from the MSP430 using an opto-isolator relay

(Clare CPC1017N).

As shown in Figure 4.2 we employed the Texas Instrument CC2530 as our

Zigbee wireless radio. The CC2530 is a System-on-Chip solution providing both a

8051 microcontroller core and a 802.15.4 radio in a single package. We designed a
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small daughter board which connects using a 8 pin header onto the energy metering

board. This board serves as an end device in our Zigbee network, and connects to

the nearest base station available. The CC2530 communicates with the MSP430

IC using a serial port. The network structure is the same as that used by the

Occupancy nodes in our HVAC control system.

The final component of the SEM is the power supply unit. We wanted the

PSU to be cheap, have a small footprint on the PCB and also meet our maximum

power budget of around 500mW. Our SEM design requires two voltage supplies —

a +12V input for the mechanical relay and a +3.3V DC supply for the MSP430

and the CC2530 chips. While transformer based PSU designs provide isolation, we

chose not to use them since transformers are expensive and bulky, thus occupying

a lot of space. Another option is to use a direct rectification capacitive power

supply[18], although such a PSU is usually inefficient and can supply limited cur-

rent up to 40mA-50mA. Our final PSU design is based on direct-rectification with

a buck boost converter IC - LNK304, providing up to 120mA at +12VDC (Figure

4.2). We use another LDO regulator to drop the +12V down to +3.3V levels. Our

complete PSU design has a small PCB footprint and costs less than USD $3 (in

quantities of a 1000).

Finally, we needed a safe and ergonomic casing for our SEM. To reduce

the design and prototyping time, we re-purposed Leviton’s duplex plug-in surge

suppressor 5100-P as shown in Figure 4.3(a) and 4.3(b). We removed the surge

protector components from the casing, keeping only the necessary plug contacts.

The casing then provided sufficient empty space and after a careful design we were

able to fit our SEM PCB and the CC2530 wireless module into it. The advantage

of using the surge protector is that the casing is quite sturdy, provides ventilation

and is also UL safety certified.

The bill of material (BoM) for our complete Smart Energy Meter is less

than $15 (in quantities of 1000). Note that this cost does not include the PCB

manufacturing and component stuffing, which we estimate at another $5 or even

lower in larger quantities.
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4.2.2 Software Design and API

The software on the MSP430 IC controls the core functionality of the en-

ergy meter. The MSP430 variant (MSP43042x2) that we use contains an ESP

subprocessor that automatically calculates the energy-related data, such as power,

voltage, current, reactive power, and many other power parameters. Our software

comprises of three basic tasks - the energy metering task, the command task, and

the serial task. The energy metering task handles retrieving values from the ESP

subprocessor, doing load classification and calculating the final outputs (such as

averaging or thresholding) that will be sent to the Energy Auditor. The serial task

handles serial communications with the CC2350 radio. The command task con-

trols the operation of the meter by specifying what sending mode the energy meter

needs to operate as. These modes are set by commands that come from the Energy

Auditor through the wireless network. There is a fourth task that monitors the

temperature, and will shut down the connected load when the temperature goes

above safe values.

The CC2350 runs the wireless Zigbee stack that forms our network. It’s role

in the energy meter is simply to handle the wireless network and act as a data pipe

for the connected MSP430. Any data packets addressed to the EM automatically

get sent to the MSP430 using the serial interface.

In order to support a wide variety of policies and functionality, the SEM

has several parameters that can be set which control how it operates. The SEM

supports different send modes, which allow the building manager to control the

rate at which data messages are sent. We list the settings that determine how the

EM handles demand response events and policies, all of which can be set from the

Energy Auditor:

• Constant Send – Sends energy data every second.

• Threshold Send – Sends new data only when new data differs by a specified

wattage. Default is .5W. The threshold value can be changed via a command.

• Average Send – Sends averaged data over specified time period. Default is

30 secs. The averaging can be changed via a command.
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To support the demand response action policies, the SEM has three param-

eters that set when the connected device should be powered on or off.

• Day Time Priority Level – Priority level during working hours. Monitors for

example might have a higher priority during day time hours.

• Night Time Priority Level – Priority level during night hours. Lights for

example might have a higher priority during night time hours.

• Device Type – The type of device, which currently can be unknown, lamp,

desktop computer, monitor, fan, laptop computer.

We implemented a signature detection algorithm based on simple heuristics

to classify the type of load on the SEM which works as follows. In the training phase

we observed the power, voltage, current and power factor of different types of loads.

The power factor of the load gives the basic type of a load - resistive, inductive

or capacitive. The variation in power, voltage and current values also gives an

idea about the type of load. For example, a lamp will have a power factor of 1.0

with constant power draw, whereas a table fan is an inductive load, with varying

power consumption depending on its speed. We have tried to classify the various

types of loads seen in a typical office environment - desktops, monitors, laptops,

speakers, table lamps, etc. The detection gets challenging when two devices classes

have similar patterns, or when one device class has varying patterns depending

upon the model and manufacturer. We observed that laptops and LCD screens,

for example, have a power factor close to 0.65 and consume power in the range

of 20W to 60W. We distinguished between the two with variations in the power

consumption of laptop with time, and the difference in startup power draw of both

devices. The detection also gets challenging with devices which have power factor

correction, and many different internal states, in which case more complicated

NILM approaches must be utilized[14, 15, 29, 32]. However, in Section 4.4 we

show that our simple heuristic is 90% accurate in classifying common building

loads and in case of incorrect detection we can always fall back to user input to

specify the load type.
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(a) (b) (c) (d)

Figure 4.3: Picture of our energy meter (a, b) along with our SheevaPlug base

station (c) that is deployed in the hallways. The CC2530 based wireless module

that are in both the base station and the energy meters is also shown (d).

4.2.3 Wireless Network

Our wireless network uses Zigbee since it is a popular standard for smart

building technologies. Our network consists of our smart energy meters and base

stations, both of which utilize our CC2530 based wireless module. Our base sta-

tions consist of our wireless module connected to plug computers, which are inex-

pensive small form factor Linux based computers. One such plug computer is the

SheevaPlug which contains a 1.2Ghz ARM processor and 512MB of memory and

flash memory storage. These plug computers are connected to a local Ethernet

port, and communicate with our main Energy Auditor server. Figure 4.3 (c) shows

a picture of our basestation along with the wireless module. We reuse the same

network structure as our Occupancy based HVAC system.

One key differentiating aspects of our current deployment is that of actua-

tion, and sending data back to the end devices. To facilitate this, we maintain a

mapping of meter IDs with their Zigbee assigned 16-bit network address. When

an SEM sends a data message to its parent basestation, the basestation learns and

records the ID associated with that network address. It will then send a periodic

mapping message to the EA server, which maintains this mapping in a database

table. Whenever the EA needs to send a command message to a specific energy

meter, it looks up the network address and basestation that is associated with the

meter ID. It then sends the data command to that basestation, which transmits it
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to the desired SEM. Because of the importance for these command messages, we

employ an application level acknowledgment to ensure that messages are delivered.

If an acknowledgment is not received, the messages get re-sent. Zigbee operates on

the 2.4Ghz ISM band and can potentially suffer from interference from other de-

vices such as WiFi devices, which means that dropped packets are an unavoidable

reality[24].

A SEM can send several different types of data messages to the server.

The most common are the energy report messages which contain parameters such

as watts, volts, amps, power factor, and reactive power. The actual message type

depends on the send mode. Another data message is a status report, which contains

all the current parameters the EM has. The messages from the server back to the

EM are command messages that set the different parameters and settings on the

EM, such as send mode, priority level, etc. The server can also request the status

of the EM as well as actuate it.

4.3 Analysis and Actuation Server

The main component of our system is the Energy Auditor engine which

is responsible for the data storage, data analysis, and management modules for

actuating the individual smart energy meters. The EA engine resides on a server

computer, and from a conceptual view it consists of modules that provide func-

tionality to the system. These modules perform an operation, such as checking

energy waste by comparing energy usage against occupancy, and can be upgraded

or extended by system programmers as needed. New modules can also be added

as desired. Users do not interact directly with the modules normally however, but

rather through interfaces, which provide access to the underlying modules. On

top of interfaces, users can set policies and actions that give them control over

the energy devices in the system. Policies are automatic commands that the users

can set in order to actuate when certain conditions are met, such as turning off

devices when a room becomes unoccupied. These give users the ability to control

devices without have to manually actuate them. Actions are similar, but involve
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commands that are paired with objectives. We first describe the modules that our

system currently provides, starting with the core modules of the Energy Auditor:

• Data Server – this module acts as a server and receives all of the data from

the basestations and stores it into the storage module. It can also examine

the incoming data to raise events.

• Storage – this module is responsible for storing the energy meter values

(e.g. power consumption, voltage, current, etc.) and occupancy data for

each room.

• System Settings and Parameters – records system information, such

as the meters that are deployed, the users in our system, the basestation

information, etc.

• Visualization – displays the data for users (via webpages), and provides

several options to view the data. It also provides the ability to compare

energy meters.

• Authentication – authenticates access to the Energy Auditor, including

both end users, who have a restricted view of their meters, and the building

manager, who has admin access and complete control over the system.

• Actuation – provides the core ability to remotely turn on and off connected

devices.

Policy/Action management modules are listed next. These provide the

mechanisms to support policies, which typically involve an action along with a

condition. Thus users can specify that when a certain condition is met, that the

following action should be taken. Actions on the other hand attempt to fulfill an

objective, and are how demand response (DR) events are handled in our system.

Both end users and building managers can set policies, but only building managers

typically will set actions.

We designed these actions to handle DR because this gives the control to

building managers, who are the ones that must make decisions when emergency
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events happen. These actions can be quickly setand allow managers to limit the

impact that reducing energy consumption will have on the building occupants. A

series of several DR modules have been created, each giving managers a different

way of specifying a load-shedding action.

• Occupancy-Based Policy – allows users to set a policy for actuating de-

vices based on occupancy, such as turn off a device when room is currently

unoccupied.

• DR Action (Priority Level) – will shut down devices according to their

assigned priority levels. All devices have a priority level that the building

manager sets.

• DR Action (Device Type) – will shut down devices according to their

device type. Managers can set an action to shut down all laptops (which

have batteries) for example in order to reduce energy usage.

The following are the web-based interface modules, which provide the meth-

ods for end users and building managers to interact with our system:

• MyDashboard – the main interface that end users interact with. Upon

logging in, users are able to access their meters, visualize the energy traces,

and utilize the above mentioned modules, such as the energy waste module.

• Energy Auditor Administration – this is the administrative interface

that building managers will rely on. Managers can set policies through here

and also enable actions when required. Managers also have very fine-grained

control over the system wide settings and can determine access levels for

users, set parameters for devices, and maintain the overall mapping of de-

vices.

While modules can be added and extended as desired, end users and build-

ing managers will typically only directly deal with the interface modules, and set

policies and actions through this interface.
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Our Energy Auditor (EA) is implemented on a commodity DELL Pow-

erEdge 2950 server machine. The core of the system is a database (currently a

MySQL database), which maintains all the data collected from the different mod-

ules. A large collection of tables store the data that make up our system, which

include not only data from the SEM, but also meta data such as the energy meters

parameters (e.g. what their current data type is and who their owners are) and

the list of users in the system. The current implementation of our system uses

both Python and PHP scripts that interact with the database, with each module

typically consisting of a script program (and associated classes and libraries).

The data server module consists of a Python script on the EA server that

acts as a network server for all of the basestations. The basestations will send all

of the energy and occupancy data to the data server module. Upon reception of

the incoming data, the data server module will examine and parse the packets,

raise events if necessary, and store the data in the storage module (databases).

Basestations also are able to receive commands from this module by requesting all

commands stored in the commands database table that are meant for it.

The energy values collected from various SEM meters are essential for the

analysis, visualization and actuation modules. One technique that we implemented

to allow fast visualizations across different time spans is the use of materialized

views. Energy data comes in at a rate of typically once a second, and attempting

to view this data over long time scales (such as over a year) will result in far too

much data to process in a graph. To handle this, we have four tables to store

the energy meter data at different resolutions, such as once a second, averaged

at once a minute, once every 15 minutes, once every hour, and once every six

hours. We run a program every minute that performs this averaging and stores

the data in these materialized view tables. While this means that our storage needs

are increased, given that storage is extremely inexpensive, we feel this tradeoff is

worthwhile. When a user visualizes the energy usage of a device across different

time spans, the system selects the most appropriate time resolution to view the

data. For example, to view data over 10 minutes, the 1 second data tables will be

used, while to view data over one year, the 6-hour table will be used.
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The interface modules are all implemented as PHP scripts that form the

basis of our Energy Auditor Dashboard website. Visualization, authentication,

and analysis modules all reside as PHP programs. Users log in to the system and

can view their energy consumption, analyze their usage, and actuate their devices.

The action and policy modules are implemented using scripts and the

servers themselves. For the demand response actions, upon receiving the objective

goal, the script will send a broadcast command to the command table specifying

which priority level or device type to turn off. For occupancy-based policies, a

script will check for new occupancy events once a second. When it sees a change,

it will actuate the devices owned by that user appropriately. The other modules

are implemented in a similar way, through scripts that interface with the storage

module. Through this method, we can implement more modules as desired, as well

as expand on our current ones.

4.4 Evaluation

4.4.1 Data Collection Results

We show a representative set of energy traces from our deployment. Several

other research efforts have also presented energy traces to demonstrate the diversity

in energy consumption loads across different devices and device types[18, 21, 32].

We instead focus on a few interesting power plots. Figure 4.4 shows the traces over

a month of a computer and three monitors, combined as a single load. The reduc-

tion in energy when the monitors go to standby mode can be seen clearly, while

the computer remains on the entire time, thereby wasting energy. Figure 4.5 gives

a view over a week for an office microwave. This particular graph demonstrates

one weakness with our materialized view averaging scheme – because a microwave

tends to be on for only a few minutes, being averaged at 10 minute intervals will

have the effect of distorting the actual power that microwaves require (typically

more than 1000 watts). The different heights are the result of different amount of

times that the microwave is heating a particular food. Figure 4.6 shows what it

looks like averaged for only 1 minute over a single day.



56

Mar 10 2011 Mar 13 2011 Mar 16 2011 Mar 19 2011 Mar 22 2011 Mar 25 2011 Mar 28 2011 Mar 31 2011 Apr 03 2011 Apr 06 20110

50

100

150

200

250

Po
w

er
 C

on
su

m
pt

io
n 

(in
 W

at
ts

) Desktop PC + 3 LCD Monitors  -- Power Consumption (in watts)

Figure 4.4: Power consumption of a desktop PC + 3 LCD monitors for over a

week.
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Figure 4.5: Power consumption for a microwave oven for a week.
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Figure 4.6: Power consumption for the same microwave oven for a day.
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Table 4.1: Results of our load classification tests. For most general classes of

devices, our algorithm works well and can recognize the load.

Load Type Results
Monitors 14/17 (82.35%)
Desktop 8/8 (100%)
Lamp 4/4 (100%)
Laptop 4/4 (100%)
Others 6/7 (85.7%)

Total 36/40 (90%)

4.4.2 Meter Accuracy

We calibrated our smart energy meter using a WattsUp Pro[38] which is

rated to be 1% accurate. We then tested the SEM with several loads with varying

power consumption, ranging from 30W to 1kW. We also tested different type of

loads - resistive and inductive (capacitive loads are a rarity). The measured values

from the SEM were always within 1% of the WattsUp meter. Calibrating against

a more accurate reference meter would allow us to acheive even better accuracy,

and Texas Instruments claims that the particular MSP430 chip with ESP that we

use has an accuracy up to 0.1%.

4.4.3 Load Classification Accuracy

We tested our load classification algorithm by plugging in different loads

available around our building and checked the device type obtained through our

load detection algorithm. The algorithm worked fairly well for loads which were

similar to the ones we trained on. However, when the new load was remarkably

different, like a fan with power factor correction or a 5 year old monitor, the algo-

rithm did not converge to any class of load (returns “Not Sure”), or misclassified

into a wrong device class (generally a lamp). Table 4.1 summarizes our test re-

sults with our classification algorithm on the most common device types in our

building. We note that while our load detection algorithm can benefit from more

complex NILM approaches [14, 29, 32] and improve detection accuracy, our simple
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heuristic based algorithm works well in office environments which are generally

homogeneous.

4.4.4 Network Throughput Tests

For testing the network throughput, we connected 20 SEM nodes to a single

basestation and had them report the power readings at once per second. The

channel our Zigbee network uses is 20. We also actuated the device intermittently

to check if both the directions of the network were working properly. We did not

however, do a systematic test of switching the loads periodically, or extensively

over the network. Our results showed that even with 20 nodes transmitting at

once per second, the percentage of packet loss was always less than 1%, with an

average of 0.05%. While we did not perform a comprehensive wide scale test,

these results show that our network is able to handle at least 20 energy meters per

basestation.

4.4.5 Demand Response

The demand response actions give building managers the ability to quickly

shut off loads. We demonstrate the results of turning off devices based on priority

levels. We test our priority level action in a single person office. We have seven

loads, each with a different priority level (in parentheses) - a fan (1), phone charger

(1), one laptop (4), a lamp (5), two monitors (6), and a desktop PC (10). The

priority levels were set according to what a building manager might set - chargers

and fans have low priority as they can be shut off without too much inconvenience,

laptops can be shut off too because they typically have batteries, and desktop

computers have the higher priorities because shutting them off can have a huge

adverse effect on users (in this case, the desktop computer stays on the entire time).

We stagger turning off each priority level a few minutes apart, starting from the

lowest priority level and moving up to the highest priority level.

As can be seen, the fan and phone charger (with the lowest priority of one)

both turn off simultaneously, and the laptop and lamp follow. We restore all the
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Figure 4.7: Our priority level actions efficiently handle demand response events.

Notice how devices of the same priority level turn off and on at the same time.

devices afterwards, with highest priority first. As can be seen in the graph, the

higher priority monitors turn on at the same time, followed by the laptop, lamp,

and finally the fan and phone charger.

In a large deployment, with many meters and devices, the ability to shut

down multiple devices with a single broadcast data message is extremely valuable.

Likewise, the ability to restore devices to their previous state with one message after

emergency events gives building manager options in handling energy situations.

4.4.6 Occupancy-based Policy

End users can set policies on their devices to actuate when certain condi-

tions are met. One such policy is the occupancy-based policy, which will turn off

devices when the user’s room becomes unoccupied, and turn on devices when the

room becomes occupied.
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Figure 4.8: Results of our occupancy-based policy on a user’s devices. Notice

how the devices turn off and on immediately after an occupancy event.

We deployed our policy in an office room with four devices – a LCD monitor,

a fan, and a laptop and lamp (on the same meter). Figure 4.8 shows the results

over an hour and a half.

As the occupant leaves, the Energy Auditor detects it and sends a command

to shut down all four devices, and as the occupant arrives, the Energy Auditor sends

a command to turn the devices back on. Because of how our occupancy sensor

works, there is a short delay of 15 seconds between a person leaving a room and

our system registering that event. Therefore, it takes somewhat longer to actually

turn off a device. Additionally, sometimes the data packet gets dropped and we

must send a retransmission, which may further delay the actuation slightly.
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4.5 Managing IT loads

An important contribution to the total energy consumption is IT loads.

This is especially true of the IT dominated CSE building at UCSD. However,

computers are becoming omnipresent and contribution of IT is slated to increase in

any typical building. As we saw in Chapter 4, we cannot switch off the computers

using our Smart Energy Meter as it needs to be gracefully shutdown. Previous

work from our lab [1, 2] has addressed this problem. There are two solutions

that we have come up with - Somniloquy and SleepServer. The basic idea behind

them is that we can put the computer to sleep while maintaining its network

presence. This allows the user to remote login, have small applications running in

the background, wake up the computer in case of an Instant Message or VoIP call

and other network related activities. Somniloquy requires attaching a USB module

for this purpose to every computer interested in the product and SleepServer is a

complete software solution for computers in enterprises.

Deploying this can lead to significant energy savings in IT loads. For ex-

ample, had Somniloquy[1] been in use in the CSE building and using the data for

the week of August presented in Figure 2.3, we can estimate the potential energy

savings. Assuming all desktop PCs in the building were powered on for 45 hours

during the week (8 hours a day, for 5 days per week + additional 5 hours) and

were using Somniloquy at other times (during the evenings and the weekends), the

direct energy savings from the reduction in plug loads alone over the entire week

would have been around 20%. Additionally, if servers in the machine room were

also using Somniloquy, using the same 45 hour work week, another 28% energy

savings would be possible. Since this equipment will no longer be generating heat,

second order effects such as reduced load on the air-conditioning and climate con-

trol system would lead to even more energy savings. Combined, the total energy

savings would potentially be close to 50% of the current levels.
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4.6 Future Work

The form factor of the Smart Energy Meter is something that can make

a difference in its usage in practice. By making the energy meter so small and

cheap, its feasible to embed them in the receptacles of new buildings. This would

allow every plug point in the building to be monitored and actuated, giving the

building managers a high amount of control on the plug loads in the building. For

example, with a little bit of analytics, building managers will be able to see the

power consumption in every room of a building, have an alarm raised if the power

draw of a load increases beyond a threshold and so on. Another way the energy

meter can be packaged is by embedding them in the plug loads themselves. This

would help the energy saving appliances to show how energy efficient they are by

giving a real-time feedback to the user and hence, become a selling point for them.

It will also help in recognizing any anomalies in the normal working of the device.

Other form factors can be in the form of a power-strip, or as a bead on the power

cords to the appliances.

A primitive NILM algorithm can be embedded on the SEM to distinguish

between a small number of loads, say up to 6. This would allow us to connect

a power-strip to the SEM and still distinguish between the power consumed by

different appliances connected to it. With this approach we can reduce the cost of

deploying the energy meter on every appliance in the building. However, we will

not have the control of switching each of the loads individually, and all of them

will have to turned on/off as a group. Also, current NILM technologies require

training, and even with a primitive implementation, this cannot be avoided.

With the capability of sending data at the rate of once per second, there

will be a huge amount of packets generated by the ZigBee network in an average

building. Although we have optimized the design for this high data rate, we still

have to see how the network scales on a wider deployment. With ZigBee using

the same 2.4GHz spectrum as WiFi commonly used in buildings, they could easily

interfere with each other in a dense deployment [24]. Further, to the best of my

knowledge, there has never been a sensor network deployment of nodes scaling to

thousands of nodes, which is the number of nodes it would take to deploy this
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system across one building.

Privacy and security also become major concerns with such technologies.

If a person’s daily fine-grained energy consumption is exposed, one can easily

interpret his regular activities. Further, as the SEM allows a person to actually

switch devices on/off remotely, an unauthorized person can potentially do much

more damage than just corrupting the personal computer or, obtaining confidential

information. Both these concerns will need to be addressed before this technology

is used in practice.
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Chapter 5

Conclusion

With this work, we have tried to demonstrate that significant energy savings

in buildings is possible if fine-grained occupancy information is available and put to

good use. The Energy Dashboard gives us a good framework to study the energy

consumption patterns of buildings at UCSD, and with special instrumentation,

the subsystems of CSE building in particular. This allowed us to concentrate on

the subsystems which consume the most energy in buildings, and also gave a good

feedback on how much our solutions helped in reducing the power consumption of

the building.

We designed and developed our own wireless occupancy sensor nodes for

measuring the binary occupancy information of the rooms in the 2nd floor of the

CSE building at UCSD. With the help of Physical Plant Services, who gave us

access to the control of the BACNet system controlling the centralized HVAC sys-

tem of CSE, we were able to study the effect of potential benefits of deploying the

occupancy based HVAC control system on the building and also use the occupancy

nodes to actually measure the performance of the deployed system on one out of

four floors of the building. Our results show that we saved 9.54% to 15.73% in

HVAC electrical energy and 7.59% to 12.85% in HVAC thermal energy on our test

days.

To tackle the plug loads in the building, we developed our own Smart

Energy Meter(SEM) and Energy Auditor system. The SEM is designed to be

cheap, wireless and of small factor so that it is possible to deploy it on a wide scale

64
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even on existing buildings. The software on the SEM allows us to configure to

transmit the power values at different rates, or send the data only when the values

change by a certain threshold. The Energy Auditor analyses the data collected

from these energy meters and provides information in a useful format to both the

users and the building managers. The users can monitor all their devices, remotely

actuate them and even set policies like automatically control them based on the

occupancy information. The building managers can set a priority on each of the

meters and actuate the meters based on this priority in case of a demand response

event. We have demonstrated our system with a deployment of 15 meters in the

CSE building at UCSD.
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