Sentinel: Occupancy Based HVAC Actuation using Existing WiFi Infrastructure within Commercial Buildings

Bharathan Balaji, Jian Xu, Anthony Nwokafor, Rajesh Gupta, Yuvraj Agarwal University of California, San Diego Carnegie Mellon University

Occupancy-driven Building HVAC

HVAC: Heating, Ventilation and Air Conditioning

HVAC Control (via BACnet)

- Overview
- Motivation
- WiFi Based Sensing
- Challenges
- Implementation
- Results
- Conclusion

- Overview
- Motivation
- WiFi Based Sensing
- Challenges
- Implementation
- Results
- Conclusion

Why is HVAC Efficiency Important?

Commercial Buildings Energy Breakdown¹

US Energy Consumption¹

Lights Commercial 19% HVAC 17% 20% Residential 29% Plug loads Misc Industrial Transportation 23% 22% 36% electricity 40% 30% 39% carbon emissions **Occupancy based** control of HVAC can provide 15% – 40% Occupancy **Static** energy savings!² Based Control Control

- 1. Building Energy Data Book http://buildingsdatabook.eren.doe.gov
- 2. OBSERVE: Occupancy-Based System for Efficient Reduction of HVAC Energy Erickson et al. IPSN 2011

Occupancy Based HVAC Control

Existing Occupancy Solutions

- Modern buildings use motion sensors
 Cannot detect stationary occupants²
 Expensive to install in existing buildings
- Wireless sensors based solutions
 > Use of camera¹ or combination of sensors²
 > Hard to deploy and maintain at scale³
- Leverage existing infrastructure
 Accurate, scalable

Inexpensive, easy to maintain

POEM: Power-Efficient Occupancy-Based Energy Management System. Erickson et al. In IPSN 2013.
 Duty-Cycling Buildings Aggressively: The Next Frontier in HVAC Control. Agarwal et al. IPSN 2011
 @scale: Insights from a large, long-lived appliance energy WSN. Dawson-Haggerty et al. In IPSN 2012

- Overview
- Motivation
- WiFi Based Sensing
- Challenges
- Implementation
- Results
- Conclusion

WiFi Based Sensing

- Self-calibrated indoor localization not accurate
- More accurate solutions require war driving, complex client apps
- Locate up to 1000 devices in real-time
- Significant energy savings even with coarse grained localization

Occupant's Office

1. On the Empirical Performance of Self-Calibrating Wifi Location Systems. Turner et al. IEEE LCN 2011

WiFi Based Sensing

- Assume visitor cannot enter without owner present
- Division of spaces into personal and shared
- Assume person in office whenever within vicinity
- Sacrifice savings when occupant is just outside office
 - Real Location
 - **Possible Location**
 - Assumed Location

- Overview
- Motivation
- WiFi Based Sensing
- Challenges
- Implementation
- Results
- Conclusion

Partitioning the Building

Zones may consist of more than one room

- Zone contain both personal and shared spaces
- Some personal spaces converted to shared spaces

Zone Type	Area	Electric Power
Personal	37.50%	63.90%
Shared	58.30%	66.90%

Contribution of each type of space to area and electricity in our building testbed

Max savings of 33.1%

Challenges with Using WiFi for Occupancy Sensing

- Occupant does not use WiFi
- Device battery may run out
- Phone forgotten at home
- Need to lend office to visitor

Leveraging WiFi Connectivity for Occupancy Sensing

- Assumption: WiFi radio is always connected
- Reality: WiFi radio duty cycled to save power
- Android, Windows Phone: Can change settings
- iPhone: Not possible to change settings
 Change settings to fetch mail every 15 mins
- May impact battery life
 Smartphone app for reduced battery impact

- Overview
- Motivation
- WiFi Based Sensing
- Challenges
- Implementation
- Results
- Conclusion

Building Testbed – CSE, UCSD

Built in 2004, 145,000 sq ft, 5 floors
 HVAC: VAV with reheat coil, 237 zones
 Occupants: Faculty, staff and students

Collecting WiFi Data

- Authentication packets contain:
 Client MAC, AP MAC, client username
- Book keeping information:
 Start, stop, hand-off and periodic liveness packets

Acquiring Metadata Information

Occupancy Based HVAC Control

- Three modes of operation in each zone
- Occupied (Weekdays 6am − 6pm)
 > Adequate ventilation, 4°F band (e.g. 70°F − 74°F)
- Standby (Weekdays 6pm − 10pm)
 Minimum ventilation, 8°F band (e.g. 68°F − 76°F)
- Unoccupied (Nights & Weekends)
 ➢ Minimum ventilation, 12°F band (e.g. 66°F − 78°F)
- When we turn "Off" HVAC, we go into Standby mode

HVAC Working & Savings

Sentinel: Overall Architecture

1. BuildingDepot: An Extensible and Distributed Architecture for Building Data Storage, Access and Sharing. Y. Agarwal, R. Gupta, D. Komaki, and T. Weng. In BuildSys 2012

- Overview
- Motivation
- WiFi Based Sensing
- Challenges
- Implementation
- Results
- Conclusion

Results – User Study

- Survey of 187 out of 415 building occupants
- 61% users always connected to WiFi
- Reasons for not using WiFi:
 - Poor WiFi coverage
 - Good cellular data plan

> Device connectivity problems with WPA2

Results – Accuracy

- 116 occupants, 10 days, 436 events
- Ground truth collected manually
- 86% accuracy, 6.2% false negatives

Results – Energy Savings

- Control of 55 out of 237 HVAC zones for 1 day
- 17.8% HVAC electrical energy savings

Conclusion

- Occupancy information is crucial to effective use of HVAC in commercial buildings.
- It is possible to use existing WiFi infrastructure for occupancy detection in building spaces.
- Our occupancy model applies to personal spaces. Shared spaces are currently not subject to HVAC control.
- 86% detection accuracy using WiFi, 6.2% false negatives

WiFi connectivity issues lead to inaccuracies

23% of building area controlled using Sentinel
 17.8% HVAC electrical energy savings for 1 day

Thank You!

Questions?

Acknowledgements:

Thomas Weng, Hidetoshi Teraoka, Du Li, UCSD Facilities Management, UCSD Academic Computing Services, Anonymous reviewers

Extra Slides

Detailed Error Analysis

Impact on Battery Life

3 day usage study across 20 smartphone users