

UCSDCSE Computer Science and Engineering Fault Analysis Engine for HVAC systems in Commercial Buildings

Hidetoshi Teraoka, Bharathan Balaji, Rizhen Zhang, Yuvraj Agarwal CSE Department, University of California, San Diego

BuildingSherlock: Faults Dashboard

HVAC Maintenance

- *** HVAC** systems contribute:
 - > 25%-40% of electricity
 - ➤ 40%-55% of primary energy
- Faulty equipment and out of tune system leads to:
 - Energy wastage
 - Occupant discomfort

Proper maintenance saves 10%-25% of HVAC energy

Modern fault management systems:

- > Are elementary, do not prioritize faults
- > Require significant manual analysis
- ➤ Not intuitive nor accessible

Breakdown 17% 20% Plug loads A0%

HVAC Faults Overview

***** Fault overview:

Electrical Power

- Overview of major subsystems in the building
- Breakdown of power by end use
- > Highlight major and minor faults
- > Single click shows details of subsystem

Faults analysis:

Machine Room

2nd Floor

5.6 MBTU/hr

- > List of faults using data driven analysis
- ➤ Possibility score for a fault across different detection algorithms
- Energy wastage estimate for each fault
- > Filter faults by category and prioritize faults
- ➤ Analyze each fault using historical data

— UCSD-Main-EBU3B-Flr-2-Rm-2150-Zone Temperature:PresentValue Historical Analysis of Sensor Data

Subsystem overview:

- ➤ Visualization of subsystems with detailed sensor data
- Single click shows equipment details
- ➤ Historical trends for each sensor point
- Faults for specific part of the subsystem highlighted

***** Fault algorithms management:

- > List of algorithms currently enabled with adjustable threshold
- > Fault algorithms flag a group of possible faults based on failure symptom detected
- Detailed analysis of each fault by analyzing corresponding sensor data
- Algorithms which report false faults punished

Faults Analysis

- Modern buildings centralized management system for HVAC operation and maintenance:
- > Thousands of sensors for monitoring and control
- ➤ Standardized network protocol BACnet
- > Can be leveraged for data driven faults analysis
- Fault detection algorithms already exist:
- > Rule-based analysis based on HVAC configuration
- Machine learning based black box anomaly analysis
- ❖ Requirements for assisting building manager:
- > Faults dashboard for overview of HVAC condition
- > Priority list of faults detected using algorithms
- > Tools for manual analysis of faults detected

System Architecture

System Architecture of BuildingSherlock. The system is designed as a RESTful web service for ease of access, application development and scalability

Building Depot (BD):

- Datastore for building sensors
- > HTTP RESTful APIs
- Data and user management
- Access control and sensor groups
- Scalable to other buildings

Fault detection engine:

- Faults registration APIs
- Faults reporting with relevant sensor data
- Algorithms report faults with confidence score
- Weights allotted to algorithms as per success rate

HVAC Zone Power Estimation

Zone power estimation benefits:

- Faults analysis based on end use energy breakdown
- Quantifies savings due to fault repair
- Energy feedback to both facilities and occupants

Cooling thermal power:

- Heat transfer equation uses room temperature, outside temperature and airflow sensors
- ***** Heating power:
- Reheat valve analysis uses valve control sensor

Electrical power:

- Proportional to cubic of fan speed. Uses airflow sensor
- **!** It will provide:
- Feedback on e energy savings and wastage
- A single parameter to analyze faults
- > Feedback to building managers and occupants

Genie: Occupant Dashboard

Current HVAC status:

- ➤ Room temperature
- Estimated power usage, average CSE usage
- Current HVAC settings and schedule
- ➤ Historical trends of each sensor point
- ➤ Tips to view Genie and save energy

Control of HVAC:

- ➤ Turn On/Off the HVAC system at zone level
- Change temperature within 6F band
- ➤ Thermal feedback (too hot or too cold)
- > Send complaint to building manager
- > Set personalized schedule