
BuildingDepot: An Extensible and Distributed Architecture for
Building Data Storage, Access and Sharing

Yuvraj Agarwal, Rajesh Gupta, Daisuke Komaki, Thomas Weng
Department of Computer Science and Engineering, UCSD

{yuvraj, gupta, dkomaki, tweng}@cs.ucsd.edu

Abstract
Enabled by various sensing and data networking devices,

modern buildings are beginning to generate extraordinary
amounts of sensory data. The organization and availabil-
ity of this data is currently a challenge, especially for re-
searchers who seek to devise intelligent data-driven methods
for energy efficient use of building systems. Most current
solutions tend to be ad-hoc and proprietary, and thus do not
support mechanisms for easy data acess and sharing.

In this paper we present BuildingDepot, an extensible
and distributed system for building-related data with scalable
data storage, ease of data access, fine-grained data sharing
and access control as first class design principles. We focus
on the overall architecture and highlight how our own expe-
riences running multiple building deployments have shaped
our design decisions. We have implemented a prototype of
BuildingDepot, along with connectors to several standard
energy management systems, showing how it enables en-
terprises to incrementally deploy the system as well as Get
and Put data into BuildingDepot using a REST-style API.
We have released it as open source software to the building
research community.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Online In-

formation Services; C.2 [Computer-Communication Net-
works]: Network Architecture and Design

General Terms
Design, Management

Keywords
Buildings, API, Sensors, Data Storage, Applications,

Wireless Sensor Networks, Web Service

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Buildsys’12, November 6, 2012, Toronto, ON, Canada.
Copyright c© 2012 ACM 978-1-4503-1170-0 ...$10.00

1 Introduction
Improving energy efficiency in buildings has emerged as

an important societal issue and research area. In the US
alone, commercial buildings consume almost 35% of the to-
tal electricity generated [8]. More importantly, their electric-
ity usage is projected to continue to grow significantly [5].
The advent of battery-powered wireless sensors have enabled
buildings to be retrofit for improved monitoring of building
processes. This has led to several “green-building” applica-
tions such as occupancy detection [2], plug-load energy me-
tering [9], load-disambiguation [10, 16], lighting control [7]
and fine-grained HVAC control [2, 14].

These sensor-based applications however generate an im-
mense amount of data. Generic sensor data storage and man-
agement solutions have been researched in several domains
with a focus on attributes such as privacy [4]. Buildings have
certain characteristics however that provide unique opportu-
nities that can be leveraged as well as challenges that must
be overcome, as compared to other types of deployments.
They often have explicit notions of spatial hierarchy (build-
ing, floor, room) that form an important attribute of the col-
lected data. Because building applications rely on control
over systems, both sensing and actuation support is needed.
This control however is often distributed among various in-
dividuals, groups, administrators, building occupants, and
even building processes; thus a way of assigning actuation
ability in a tightly controlled manner is important. Authenti-
cation and secure data access is critical.

Also, building sensor networks can generate a significant
amount of data. This data can be very valuable in terms of
analysis, and thus the ability to share data within an enter-
prise and with outside entities is useful. For example, ac-
cess to the large amount of data that is being generated can
lead to discoveries in how buildings operate and what cor-
relations exists between the various building functions along
with geographic, climate, and occupancy diversities. Thus a
comprehensive data access system focused on buildings that
can address the issues of data storage, access, actuation, and
sharing will significantly benefit the building sensor commu-
nity.

In particular, there are several key attributes we believe a
system should support. It should be compatible with mul-
tiple WSN architectures. The underlying fabric should be
orthogonal to the deployment of the data storage system, al-
lowing the institution to choose their own network. Flexibil-

Sensor Nodes Base Station or Gateway

Wireless linkWired link

Office Room
Existing WSN Deployment

BuildingDepot

Data
Service

Directory
Service

User
Service

Connector

Yuvraj – Edited/Fixed Fonts 8:35pm

Figure 1. BuildingDepot connects to any existing sensor
network deployment. Connectors bridge the gap between
the wired infrastructure components (basestations, gate-
ways, or routers).

ity and scalability are also important, ensuring that institu-
tions of different sizes and needs can be supported. Institu-
tions should have complete ownership, control, and access to
their data. They make the decisions about who they want to
share data with. To facilitate this, the system should provide
rich support for users and groups that allow institutions the
ability to set access policies for their own members as well
as outsiders. It should also provide rich support for users
and groups that allow institutions the ability to tightly set
access policies for their own members as well as outsiders.
Allowing for actuation ability (for example, an office room
occupant who wants to control the temperature of their room
through the building HVAC system) without giving the en-
tity access to the actual network fabric is also an important
feature. The system API needs to be well-defined, allowing
applications to be implemented that can be re-used across
deployments. Finally, there should be flexible mechanisms
to search for and access different sensors and actuators.

Based on the above key attributes as well as our own ex-
periences, we have developed BuildingDepot (BD), an ex-
tensible and distributed architecture for storage, access, and
management of building sensor data. BD facilitates access to
the data generated within buildings using user management
tools that let institutions share their data to others in a con-
trolled manner and allow standardized client applications to
be built using a well defined API. Figure 1 illustrates the ba-
sic architecture of BD and where it fits inside a typical WSN
deployment. A typical enterprise BD installation would, for
example, consists of four components: core Data Server(s)
combined with a web service that exposes access through a
RESTful API; a Directory Service that maps the BD Data
Server(s) in an institution; a User Service that provides ac-
cess to outside users to the system; and Data Connectors that
interface with the underlying network fabric to various BD
data server(s).

This paper primarily focuses on the design and API of our
system and seeks to explain the design choices that we made

in light of our own data management efforts. We have re-
leased BD as open-source software (www.buildingdepot.
org) and have provided detailed instructions and specifica-
tions for anyone wanting to set up their own installation. It is
our hope that by releasing it to the research community, we
can spur comments, feedback, and contributions to improve
its architectural design and implementation.

2 Background and Related Work
Sensing within buildings has long been the domain of

industrial control networks and processes. Many modern
buildings, for example, have wired networks based on pro-
tocols such as BACNet or LonWorks that connect various
sensors and actuators relating to maintaining environmental
controls. These networks are only accessed by facility man-
agers and thus the data that these networks generate (such
as temperature) is not exposed. However, wired sensors are
costly to deploy in buildings, and are usually only installed
during initial construction. In contrast, wireless sensor net-
works (WSN) have emerged as a cost effective alternative
for wider deployments, especially for building retrofits. In-
deed, the research community has designed many interesting
sensor networks in buildings, measuring such physical quan-
tities as energy consumption [9, 12, 13, 17, 3], water usage
[11], occupancy [2, 14, 1], and lighting levels [7].

A key challenge in these applications is storing and ac-
cessing the data that is being generated. Typically, data stor-
age and aggregation architectures are different between de-
ployments, and rely on a data server to store and later ac-
cess the sensor data. Access to this server will likely be
ad-hoc and require manual management of users. Some de-
ployments might only store data for archival purposes, while
others might expose some of the data in a web front-end, but
any application that utilizes the data will need to be written
specifically for each system. For one-shot sensor networks,
BuildingDepot presents a uniform system that can act as a
data store with a standardized interface. Rather than having
to grant access to the internal elements of a network (such
as the gateways or even the sensors), network managers can
control user access through a single point, making user man-
agement much simpler. Networks then can remain “internal-
ized” and out of reach from outsiders, while still providing
the requisite access.

Recent efforts have attempted to provide unified inter-
faces for retrieving data from a sensor network. We highlight
two of them as examples: sMAP [6] and Sensor Andrew
[15]. sMAP [6] is a RESTful API for sensor nodes and other
network elements that provides a unified interface to get data
from a sensor network. For users with internal access to the
sMAP-based sensor network, writing applications is simpli-
fied since regardless of the device, the interface is the same.
However, sMAP does not address how outside access to the
data producing physical devices should be handled. This is
important because the implementation of sMAP assumes a
resource constrained node - nodes that likely could not han-
dle a significant amount of queries. In addition, the sMAP
devices typically do not store much historical data, and users
who want that information will have to go to a separate data-
store. Sensor Andrew [15] is a campus-wide infrastructure

Building A

BD Data Service
(Building A)

(a.example.org/bd-data)

Connectors for
Data Service

Directory
Service

Contains links to
Data Services

a.example.org/bd-data
b.example.org/bd-data

Contains institutional
users and groups

alice@example.org
bob@example.org
Group A
Group B

User
Service

BD Data Service
(Building B)

(b.example.org/bd-data)
Connectors for
Data Service

Building B

Yuvraj – Edited/Fixed Fonts 8:35pm

Figure 2. High-level view of BuildingDepot. BuildingDe-
pot consists of the three services. Each institution has one
top-level Directory Service (and any number of lower-tier
Directory Services), one User Service, and any number of
Data Services.

that also seeks to provide uniform access across the various
different devices in a large-scale sensor network deployment.
Sensor Andrew includes a web application that helps manage
the network and also store historical data. This component
is similar to BD, but is only accessible to those who already
have access to the underlying network (which does not solve
the data sharing dilemma).

Both systems can form an ideal underlying backplane that
can connect with BD for data storage and sharing, thus BD
can be a complementary component attached to a sensor net-
work deployment that is running a unified infrastructure. BD
in these cases would allow a centrally managed data reposi-
tory where people outside the network can access data using
a standard interface, linking together several networks which
an institution might have. Thus the core sensing fabric re-
mains secure by limiting its direct access.

Commercial data storage systems like OSISoft PI exist,
but are meant to retrieve SCADA data for analysis using pro-
prietary tool kits. Data retrieval and sharing is restricted.
Multiple cloud-based data stores have also been developed.
Services such as Pachube and Nimbits present a REST API
to input and retrieve data. Pachube is a hosted cloud service,
while the latter has an installable open source implementa-
tion. Google PowerMeter was another REST based web ser-
vice designed for storing smart meter data from home de-
ployments, but is no longer active.

There are several limitations of the cloud services. First,
the data resides with the services and institutions do not
fully own it. Limited access control and sharing ability is
also another issue. These cloud based services do not scale
well since they essentially take a “one-size fits all” approach,
which means that regardless of the institution, the interface
is the same. The “flat” namespace approach may work for a
small number of sensors from a single user, but has difficulty
expanding to real deployments with many sensors.

In contrast to these systems, BuildingDepot is designed
for building deployments and allows for a flexible hierarchi-
cal mapping of sensors, sharing, and actuation. This posi-
tions BD as a more effective system for storing building data
that the cloud-based services.

3 Architecture and Specification
In this section we describe the architecture and API of

BuildingDepot (BD). We wanted to satisfy several goals with
the design of BD, based on our own experiences managing
data. First, we wanted BD to be scalable and incremen-
tally deployable so as to allow institutions of different sizes
to grow their BD installations at their own pace. Second,
we wanted it to be flexible so that different types of insti-
tutions with different data organization schemes can be ac-
commodated. Third, we wanted the data in BD to be easily
searchable so that users can find sensors and actuators eas-
ily. Fourth, we wanted it to be extensible with a standardized
API so that a rich set of applications could be written against
it. Finally, we wanted BD to allow institutions a rich set of
user management features so that data sharing is efficient
at multiple granularities.

BD is centered around three main services - a Data Ser-
vice (DataS) that stores sensor data along with the context
tags that describe each sensor, a Directory Service (DirS)
that links to the DataS in an institution and stores context
tags from child DataS to allow directory searching, and a
User Service (UserS) that stores all of an institution’s mem-
bers and groups. Each of these services consists of REST
web service software modules along with a connected web
application that is installed on a physical server. In addition
to the BD services, a fourth component is the BD Connec-
tors – software that interfaces BD to the underlying sensor
network fabric. Figure 2 illustrates the overall architecture.

An institution with many buildings can allow each build-
ing to control its own DataS and access privileges. The DirS
binds together the DataS in an institution, ensuring that they
are discoverable. Since the BD API is standardized across
different devices, applications can be re-used across any BD
deployment with only minor configuration changes. For ease
of user management and sharing, we have defined three types
of users for accessing building data - internal users, institu-
tional users, and external users. Internal users have direct
access to a DataS and are managed by the administrators for
that DataS directly. Institutional users are those that are a
part of an institution, but do not have an internal user ac-
count for a DataS. These types of accounts are managed at
an institutional level, alleviating the need for DataS admin-
istrators to manage a large number of users. External users
are those who do not belong to an institution, but wish to ac-
cess data for analysis purposes. BD allows institutions to set
which outside institutions and groups have access to its data.

3.1 BuildingDepot Data Service
The BuildingDepot Data Service (DataS) is the core com-

ponent of BD and is responsible for handling the actual sen-
sor data. The DataS exposes a RESTful API for retrieving
data and inserting data into the system.

A DataS represents a single collection of sensors, where
the actual meaning of the collection is defined by the host
institution. For example, a small institution A with only two
buildings and a limited number of sensors might choose to
have a single DataS for both buildings. In this case, the
DataS would be installed on a server bd.example.org/ds.
Since there are two buildings being considered, each sen-

Top Level Directory Service
(bd.example.org/bd-dir)

A

Data Service
Building X
(bd1.example.org/dsX)

Data Service
Building Y
(bd2.example.org/dsY)

Top Level Directory Service
(bd.example.org/bd-dir)

Data Service Building Y
(bd.example.org/dsY)

Data Service Building X
(bd.example.org/dsX)

D

Top Level Directory Service
(ob.example.org/obdir)

E

Data Service Building B
(ob.example.org/obbuildingB)

Data Service Building A
(ob.example.org/obbuildingA)

Top Level Directory Service
(ob.example.org/obdir)

Data Service Building B
(ob2.example.org/obbuildingB)

Data Service Building A
(ob.example.org/obbuildingA)

Top Level Directory Service
(ob.example.org/obdir)

Data Service Building B
(ob2.example.org/obbuildingB)

Data Service Building A
(ob.example.org/obbuildingA)

Top Level Directory Service
(ob.example.org/obdir)

Data Service for both
Building A and Building B

(ob.example.org/obdata)

Top Level Directory Service
(bd.example.org/bd-dir)

Data Service
Building X
(bd1.example.org/dsX)

Data Service Building Y
(bd3.example.org/dsY)

Data Service Building Z
(bd4.example.org/dsZ)

Original version

2nd Level Directory Service
(bd2.example.org/bd-dirY)

Yuvraj – Edited/Fixed Fonts 8:35pm

B C

Figure 3. Example deployments for an institution with 3 buildings, X, Y (larger) and Z. In Fig (A), the institution
chooses to have three servers, one for the Top Level Directory Service, and one each for the Data Services. In (B), all
three services are co-located on the same server, handled at the institutional level. In Fig (C), another Building Z is
added with a separate Data Service for each building. In addition, a 2nd level Directory Service is added to handle
Building Y and Z’s Data Services.

sor point (described below) would have a building con-
text tag with the building it belongs to. Another institu-
tion B, also comprising of two buildings, might opt to have
a DataS for each building, but with both services on the
same physical server. In this case, the two DataS could
be bd.example.org/dsX and bd.example.org/dsY. Both
services are distinct, but reside on the same physical server.
A third institution C, also with two buildings, might have
a substantial number of sensors in each building. In this
situation, the institution could opt to have a DataS repre-
senting each building on two separate physical servers. The
two servers for this might be bd1.example.org/dsX and
bd2.example.org/dsY.

This flexibility in hosting allows institutions to grow their
BD installations as needed. This is in contrast to other solu-
tions that assume a flat hierarchy and force users to adhere
to those limitations. With BD, institutions can instantiate as
many Data Services as needed based on their resources and
actual sensor deployments. Figure 3 illustrates several ex-
ample deployments for an institution with three buildings -
X,Y,Z respectively. Another advantage of BD is that institu-
tions can delegate data management authority to the actual
building managers, rather than having to manage everything
at an institutional level. Building managers can choose to
control their own DataS along with access control for actua-
tion and data retrieval. The DataS API consists of:

Sensor Devices - Each sensor device can have multiple
sensor points. For example, an electricity meter device may
have a sensor point for Watts, Volts, and Amps. Tags are
used to mark context information on the sensor devices, such
as sensor class, location and owner thereby allowing users to
search for sensor devices. While sensor devices can map to
a physical sensor (such as an energy meter), they can also
represent conceptual sensors and thus do not need to directly
map to one physical unit.

For example, an occupancy sensor could have an attached
thermostat which could be represented as one sensor device
with two sensor points (occupancy and temperature) or by
two sensor devices, each with one sensor point. Each sensor
device and sensor point has an access list that determines
who can read the sensor data, the context data, and who can
write into it. Figure 4 highlights the API for this resource.
Sensor points can also be actuators, in which case POSTing a
command will actuate the underlying device if the connector

is in place to support it.
The data model for the sensor point’s time series data re-

lies on requests specifying a date range for a sensor point that
the user wishes to retrieve. The response will contain both
the time and value for the date range requested.

/sensordevice lists out all sensor devices
/sensordevice/?{context_tag}={queryvalue}
 applies a query to the list of sensor devices
/sensordevice/{sensordeviceID}
 outputs context info for this device
/sensordevice/{sensordeviceID}/sensorpoints lists
out all sensor points for this device
/sensordevice/{sensordeviceID}/sensorpoints/
{sensorpointID} info for this sensor point

/authentication Put/Post resource for authenticating
a user with site-specific access key. Returns “invalid” if
user and authtoken do not match, “valid” along with
user’s grouplist otherwise.
/inforequest Put/Post resource for external User
Services to query a user’s group list. Must provide
external access key for user.
/users/{username} Returns info on username.
Must be validated with credentials.
/users/{username}/sensors Returns list of sensors
for this user. Must be validated.

/locations lists out all locations that are defined
/locations/{location_class} info on that location
class, an example would be /locations/rooms
/locations/{location_class}/{location}
 specific location, e.g. /rooms/cs3130, this returns info
on that location along with a link to
/sensordevice/?{location_class}={location} which returns
all sensors belonging to this location

/users lists internal users on system
/users/{user} info on that user
/usergroups lists internal user groups
/usergroups/{usergroup} lists information on
{usergroup}
/sensorgroups lists sensor groups on system
/sensorgroups/{sensorgroup} lists information on
{sensorgroup}, lists the sensors and links

/directory lists out all subordinate services, including
links and a description
/context -> contains context tags of subordinate
services
/context/{context_tag} contains information about
that context tag as well as links to sensors that hold that
context tag

Yuvraj – Edited/Fixed Fonts 8:35pm

Figure 4. Abbreviated API for the sensordevice resource.

Location Tags - These are tags that can be applied to a
sensor device that correspond to its physical or conceptual
location. Under each of the location tags that are defined, the
actual location values can be set. The benefit of this scheme
is that it allows the inherent hierarchy in building sensors
to be explicitly defined, and allows users to find devices by
location. Figure 5 highlights the location resource.

/sensordevice lists out all sensor devices
/sensordevice/?{context_tag}={queryvalue}
 applies a query to the list of sensor devices
/sensordevice/{sensordeviceID}
 outputs context info for this device
/sensordevice/{sensordeviceID}/sensorpoints lists
out all sensor points for this device
/sensordevice/{sensordeviceID}/sensorpoints/
{sensorpointID} info for this sensor point

/authentication Put/Post resource for authenticating
a user with site-specific access key. Returns “invalid” if
user and authtoken do not match, “valid” along with
user’s grouplist otherwise.
/inforequest Put/Post resource for external User
Services to query a user’s group list. Must provide
external access key for user.
/users/{username} Returns info on username.
Must be validated with credentials.
/users/{username}/sensors Returns list of sensors
for this user. Must be validated.

/locations lists out all locations that are defined
/locations/{location_class} info on that location
class, an example would be /locations/rooms
/locations/{location_class}/{location}
 specific location, e.g. /rooms/cs3130, this returns info
on that location along with a link to
/sensordevice/?{location_class}={location} which returns
all sensors belonging to this location

/users lists internal users on system
/users/{user} info on that user
/usergroups lists internal user groups
/usergroups/{usergroup} lists information on
{usergroup}
/sensorgroups lists sensor groups on system
/sensorgroups/{sensorgroup} lists information on
{sensorgroup}, lists the sensors and links

/directory lists out all subordinate services, including
links and a description
/context -> contains context tags of subordinate
services
/context/{context_tag} contains information about
that context tag as well as links to sensors that hold that
context tag

Yuvraj – Edited/Fixed Fonts 8:35pm

Figure 5. Abbreviated API for the location resource.

Internal Users - This lists the users who have an account
on that particular DataS. These users are internal users, that
is, they only exist for a particular DataS and can have write
access to the sensor points. These users must be manually
created and approved by the administrators for that DataS.

Internal Usergroups - Lists the defined usergroups for
that DataS. Internal usergroups can be defined by anyone
with write privileges for this resource. Sensor devices can

allow entire internal usergroups to have read access, mak-
ing the process of defining who has access to the data more
streamlined.

/sensordevice lists out all sensor devices
/sensordevice/?{context_tag}={queryvalue}
 applies a query to the list of sensor devices
/sensordevice/{sensordeviceID}
 outputs context info for this device
/sensordevice/{sensordeviceID}/sensorpoints lists
out all sensor points for this device
/sensordevice/{sensordeviceID}/sensorpoints/
{sensorpointID} info for this sensor point

/authentication Put/Post resource for authenticating
a user with site-specific access key. Returns “invalid” if
user and authtoken do not match, “valid” along with
user’s grouplist otherwise.
/inforequest Put/Post resource for external User
Services to query a user’s group list. Must provide
external access key for user.
/users/{username} Returns info on username.
Must be validated with credentials.
/users/{username}/sensors Returns list of sensors
for this user. Must be validated.

/locations lists out all locations that are defined
/locations/{location_class} info on that location
class, an example would be /locations/rooms
/locations/{location_class}/{location}
 specific location, e.g. /rooms/cs3130, this returns info
on that location along with a link to
/sensordevice/?{location_class}={location} which returns
all sensors belonging to this location

/users lists internal users on system
/users/{user} info on that user
/usergroups lists internal user groups
/usergroups/{usergroup} lists information on
{usergroup}
/sensorgroups lists sensor groups on system
/sensorgroups/{sensorgroup} lists information on
{sensorgroup}, lists the sensors and links

/directory lists out all subordinate services, including
links and a description
/context -> contains context tags of subordinate
services
/context/{context_tag} contains information about
that context tag as well as links to sensors that hold that
context tag

Yuvraj – Edited/Fixed Fonts 8:35pmFigure 6. Abbreviated API for the users, usergroups, and
sensor groups resource.

Sensor Groups - These are public sensor groups that can
be defined by administrators or other internal users that have
write access to this resource. This allows authorized users
to publish a collection of otherwise disparate sensor devices
that might have a common theme. Figure 6 highlights the
API for Users, Usergroups, and Sn.

The design of the DataS API stems from our own issues
with our prior data management solution. Previously we
simply stored the data in a relational database, making ac-
cess to the data inconsistent across our various network de-
ployments. By defining location as a key component, finding
relevant sensors becomes easier.
3.2 BuildingDepot Directory Service

The BD Directory Service (DirS) contains links to the var-
ious Data Services (DataS) for an institution. Like the DataS,
the DirS is self-contained and can be installed on a server
with other services or by itself, depending on the institutions
preferences.

The DirS’s main resource is a listing of DataS and DirS
underneath it. These DirS can be used to form a hierarchical
tree of all of the DataS and DirS that make up an institutions
BD system. A DirS links to not only underlying DataS, but
also other DirS that are conceptually beneath it in the hierar-
chy. This allows large institutions to design a hierarchy tree
that works for the (many) buildings and sensor networks it
might have. A DirS can also store context tags from chil-
dren services. This feature allows users to be able to see any
publically viewable sensor devices that are underneath the
DirS, and provides a convenient way of searching by context
tags (for example, if the user is only interested in occupancy
sensors).

Every institution will have a top level DirS that acts as the
entry point for that institutions BD deployment. For a small
institution like the examples listed above, there will only be
one DirS, and it will link to both of the Data Services. A
large institution might have a hierarchy tree several levels
deep. Figure 3 illustrates several example deployments of
Data Services and Directory Services, including one with
multiple (two) levels of hierarchy (Fig 3 C). Figure 7 high-
lights the API.

The DirS is an important component and helps makes the
large amounts of sensors accessible to others. The design of
this service was motivated by our experience in exposing our

/sensordevice lists out all sensor devices
/sensordevice/?{context_tag}={queryvalue}
 applies a query to the list of sensor devices
/sensordevice/{sensordeviceID}
 outputs context info for this device
/sensordevice/{sensordeviceID}/sensorpoints lists
out all sensor points for this device
/sensordevice/{sensordeviceID}/sensorpoints/
{sensorpointID} info for this sensor point

/authentication Put/Post resource for authenticating
a user with site-specific access key. Returns “invalid” if
user and authtoken do not match, “valid” along with
user’s grouplist otherwise.
/inforequest Put/Post resource for external User
Services to query a user’s group list. Must provide
external access key for user.
/users/{username} Returns info on username.
Must be validated with credentials.
/users/{username}/sensors Returns list of sensors
for this user. Must be validated.

/locations lists out all locations that are defined
/locations/{location_class} info on that location
class, an example would be /locations/rooms
/locations/{location_class}/{location}
 specific location, e.g. /rooms/cs3130, this returns info
on that location along with a link to
/sensordevice/?{location_class}={location} which returns
all sensors belonging to this location

/users lists internal users on system
/users/{user} info on that user
/usergroups lists internal user groups
/usergroups/{usergroup} lists information on
{usergroup}
/sensorgroups lists sensor groups on system
/sensorgroups/{sensorgroup} lists information on
{sensorgroup}, lists the sensors and links

/directory lists out all subordinate services, including
links and a description
/context -> contains context tags of subordinate
services
/context/{context_tag} contains information about
that context tag as well as links to sensors that hold that
context tag

Yuvraj – Edited/Fixed Fonts 8:35pm

Figure 7. Abbreviated API for the Directory Service.

sensor data collection to others. Often the tags that specify a
particular sensor would only reside as strings in a relational
database, and thus anyone looking for data would need to
parse through the list to find what they want. By presenting
a standard directory service with context tags to identify sys-
tems and sensors of interest, users can more efficiently find
sensors and data that are relevant to them across an entire
enterprise.

3.3 BuildingDepot User Service
A key challenge of any shared data service is that of

user management, specifically from the perspective of ease
of data sharing and administration. The BD User Service
(UserS) enables user management at an institutional level.
Every institution that has an BD deployment will have one
UserS for the entire institution.

The UserS has two resources - users and usergroups.
Users correspond to institutional members that want to gain
access to the Data Services within that institution. People
who wish to create an account will do so using their email
address – this becomes the primary identifier for the user
account. User groups are collection of users that adminis-
trators can define, and are helpful for automatic sharing of
data. Administrators can also allow others, such as building
managers, to create usergroups by delegating administrative
authority to them.

Individuals will register with the UserS using their email
address. Once they are verified and have a user account,
they can apply to join usergroups. Usergroups can be de-
fined to have automatic acceptance based on email address
wildcards – meaning that any user account can automatically
join such user groups. Typically, an institutional group can
automatically accept any account with the matching email
address (e.g. “Institution-All” accepting any account with
@institution.org email address). Automatic groups can
be done with subdomains as well. Other groups can be main-
tained manually by the group owner or by other people that
the group owner has given write privileges to.

The UserS is aware of all the Data Services within that
institution. In order to request data from the UserS, each
DataS has an access key that it uses to request data from the
UserS. Once a user is registered and has an account, they will
be able to generate single-site access keys (through the web
application) to specific Data Services. These keys enable the
user to authenticate with the DataS when requesting data.

Each sensor device stored in the DataS has an access con-
trol list that determines who has read access to it. An in-
stitution might not want certain data points to be publically
accessible, but would expose it to members of its own in-

stitution. In that case, it can give read access to the group
“Institution-All” and anyone in that group can view the data
for that device. When a user in that group sends a request
for that resource, the DataS will query the UserS with the
user’s single-site access key to A) verify that the user has the
correct authentication key, and B) request all the groups that
the user is a part of. The UserS will only respond with the
information if A) the DataS matches that access key and B)
the access key authenticates the user correctly.

If the user’s authentication is correct, and the user belongs
to a group that has access to the device, then the user will
be able to retrieve the data. The DataS will record the user
authentication information in a local database to speed up
subsequent requests. This information will be valid up until
a configurable time-out setting (we use one day as the default
currently), after the expiry of which the DataS will query the
UserS again. This ensures that user information does not
become too stale.

Note, using email addresses as the user account name has
one particular advantage. A building manager can preemp-
tively mark devices as readable to people before they even
register for an account with BuildingDepot. For example,
during commissioning of a building occupancy sensor net-
work, the managers can mark who has access to the data
based on their email address. Later, if one of the occupants
wishes to see the data, they can register for an account, and
then access the data from the DataS immediately since their
email address was already marked with read access.

In addition to generating access keys for each of the Data
Services, the UserS will automatically generate a master ac-
cess key for the user. This master access key will reveal
not just the groups the user is apart of, but also all of the
user’s site-specific access keys. The user can use this key
with trusted clients to access all of his user keys (for all of
the data services) so that the client can access data on all of
the Data Services. Figure 8 highlights the API for the User
Service.

/sensordevice lists out all sensor devices
/sensordevice/?{context_tag}={queryvalue}
 applies a query to the list of sensor devices
/sensordevice/{sensordeviceID}
 outputs context info for this device
/sensordevice/{sensordeviceID}/sensorpoints lists
out all sensor points for this device
/sensordevice/{sensordeviceID}/sensorpoints/
{sensorpointID} info for this sensor point

/authentication Put/Post resource for authenticating
a user with site-specific access key. Returns “invalid” if
user and authtoken do not match, “valid” along with
user’s grouplist otherwise.
/inforequest Put/Post resource for external User
Services to query a user’s group list. Must provide
external access key for user.
/users/{username} Returns info on username.
Must be validated with credentials.
/users/{username}/sensors Returns list of sensors
for this user. Must be validated.

/locations lists out all locations that are defined
/locations/{location_class} info on that location
class, an example would be /locations/rooms
/locations/{location_class}/{location}
 specific location, e.g. /rooms/cs3130, this returns info
on that location along with a link to
/sensordevice/?{location_class}={location} which returns
all sensors belonging to this location

/users lists internal users on system
/users/{user} info on that user
/usergroups lists internal user groups
/usergroups/{usergroup} lists information on
{usergroup}
/sensorgroups lists sensor groups on system
/sensorgroups/{sensorgroup} lists information on
{sensorgroup}, lists the sensors and links

/directory lists out all subordinate services, including
links and a description
/context -> contains context tags of subordinate
services
/context/{context_tag} contains information about
that context tag as well as links to sensors that hold that
context tag

Yuvraj – Edited/Fixed Fonts 8:35pm

Figure 8. Abbreviated API for the User Service.

3.4 BuildingDepot Data Connectors
BD Data Connectors (DC) are how BD interfaces with the

underlying sensor network. Each sensor network can differ
in how the data is stored, where the data is generated, and
what the relevant access points are. DCs are a framework
for writing programs that can retrieve data from the sensor
network and write data back (for actuation). Essentially, a

DC retrieves data from the sensor network and sends it to the
relevant DataS.

One key challenge with Data Connectors is managing the
mapping between data items on two different systems. A DC
is a piece of software that will retrieve data from the physical
sources (which might be a collection server, base station, or
the sensors themselves) and sends them to a DataS. The con-
nector then has two parts - the retrieval part, which must be
customized for the actual data source, and the sender, which
is universally defined as a post request into the proper data
point on a DataS. The DC is responsible for the mapping
between the two as well. The benefit of DCs is that once
written, they can be easily re-used in other deployments.

4 Usage
We give an example of how an institution consisting of

several buildings can deploy and use BuildingDepot ser-
vices. Our example is based on a hypothetical academic in-
stitution called Any University (AU) as shown in Figure 9.
The AU campus comprises of two schools - the Engineering
(SoE) and Arts (SoA). SoE has three buildings (CS, EE, and
ME) while the SoA has two buildings (Arts and Social Stud-
ies). The three engineering buildings have deployed internal
WSN, which happen to run on different protocols. The two
buildings in SoA have no WSN.

The AU campus has a central facilities group that main-
tains a BACNet network for HVAC control. Each of the five
buildings is connected to the BACNet network and has wired
thermostats in every room along with a damper that controls
the warm or cold air flow into the room. In addition, the fa-
cilities group has deployed industrial meters at the mains for
every building as well as at the campus level (to measure total
campus energy consumption) - these are connected through
a wired ION network.

Figure 9 illustrates how AU might choose to organize
their campus BD installation. Each of the SoE buildings has
their own Data Service which stores sensor data (occupancy
and plug-load meters) and is controlled by the building man-
agers for each building. The two SoA buildings do not have
a sensor network and therefore do not need their own DataS.
However, the building managers in the SoA want control
over the HVAC systems in their building, and thus have a
shared DataS running on a server maintained by the campus
facilities group. The facilities group maintains the BACNet
and ION networks and has an OPC server with connector
software that can retrieve the data values from the two net-
works and send them to the appropriate DataS.

The three SoE buildings have deployed additional client
applications based on their sensor networks. Importantly, us-
ing BD building managers can still effectively run custom
applications at the sensor fabric level (using Sensor Andrew
or sMAP for example), without having to provide access to
the underlying infrastructure except to trusted users. Thus
BD is not attempting to replace such systems but rather aug-
ment them. In fact, in our own building we have our own
sensor deployment which we trivially modified to use an BD
connector and as a result we can use it for our sensing and
actuation application. The tight controls on user access as
well as the fact that server class machines offer much more in

Campus
Facilities

BACNet and ION Network

Top Level Directory Server
(ob.au.edu/bd-dir)

SoE Directory Server
(soe.au.edu/bd-dir)

CS Data Service
(cs.au.edu/bd-data)

EE Data Service
(ee.au.edu/bd-data)

ME Data Service
(me.au.edu/bd-data)

SoA Data Service
(soa.au.edu/bd-data)

OPC Server w/
Connector

Total Campus Data Service
(campus.au.edu/ds)

AU Dashboard Web App
(campus.au.edu/dashboard)

Yuvraj – Edited/Fixed Fonts 8:45pm

Art

Social Sciences

Figure 9. A hypothetical BuildingDepot installation at an Any University. BD enables data from different sensor net-
works deployed across multiple buildings to be accessed and stored as well as be searchable using the Directory Services.
The administrators are flexible to tailor their deployment of Data Services and Directory Services as they please and
can incrementally deploy BD services.

terms of capabilities that a sensor node makes BD a good so-
lution for opening up data retrieval and access to the broader
audience.

This is merely an example of how an institution can struc-
ture BD according to their own needs, highlighting its flex-
ibility. An institution can start with just one DataS for
one building, and incrementally add additional services as
needed. Alternatively, an institution can plan for a larger
deployment and prepare multiple servers for use in Build-
ingDepot. In any case, an institution with an existing de-
ployment can quickly connect it to BuildingDepot, and de-
termine what the required server infrastructure is based on
the amount of sensors and data that will be expected.

5 Implementation
In this section we describe our implementation of the

BuildingDepot architecture. While we plan to release our
BD implementation as open source, it is important to point
out that the goal of BD is to define the architecture, the API,
and the specification while the specific implementations can
change. In fact, part of open sourcing the software is to en-
courage different implementations.

We have implemented the services in BD using Python
and the Flask micro-framework on top of Apache. Each of
the services has a similar architecture. The main file uti-
lizes the Flask framework to route web requests (to a specific
URL) to the appropriate function. These functions contain
the core logic that handles that request. We utilize models
to abstract the database management systems that are used.
Requests to a web application URL will return a templated
web page, while requests to the REST web service URL will
return a JSON response that contains the desired data. Con-
figuration of the services (such as adding links or changing
settings) is done through the web application interface and
the settings are stored in a MySQL database.

Since security is vital, all services should be run over
HTTPS. HTTPS utilizes the SSL/TLS protocols to create a se-
cure channel over which all data is encrypted. In order to

authenticate access, we use HTTP basic authentication.
Because HTTPS is used, the access keys, passwords and data
will be encrypted.

The Data Service is the most performance-sensitive of the
services, and thus we sought to optimize for storage perfor-
mance. We use the 2 DBMSes - MySQL (meta-data) and
Cassandra (timeseries data). The use of Cassandra allows
multiple back-end databases to be used for a given Data Ser-
vice, as Cassandra is designed for distributing large amounts
of data over multiple servers.

The Directory Service utilizes MySQL to store the links
to its children. The schema for this is similar to the DataS. In
order to grab the context tags, a crawler program must be run
periodically to crawl through the children DataS and store all
the context tags.

The data store for the User Service is a relational database
(MySQL) and several tables store the user and groups infor-
mation for the institution. Additionally, the UserS must be
configured with all of the DataS in its institution to generate
access keys for each DataS to use (the DataS must be con-
figured with their unique key to be able to query the authen-
tication resource). Three tables store the access keys - one
for the main access key, one for the site-specific institutional
access keys, and one for external access keys.

We have developed several Data Connectors to release as
part of the BuildingDepot Connector library. An OPC Data
Connector is one that will be useful in many deployments.
This application is a Windows application that is built on
top of ClientAce OPC library that will retrieve OPC vari-
ables and POST them to a specified Data Service. Similarily,
we have written a BACNet connector that allows building
managers to connect BACNet resources witih BuildingDe-
pot. We have also developed a connector for our own sen-
sor network deployment, which utilizes intermediate bases-
tations. The connectors reside on the basestations, and will
POST sensor data to the Data Service. We are also exam-
ining using internal Data Connectors that reside on the Data
Services themselves and write the data directly into the data

stores when a large number of data points must be inserted.
We are continuing work on developing a large number of
Connectors for use by the broader BuildingDepot commu-
nity, such that a large library of these can be used by building
managers and researchers.

6 Conclusion and Discussion
In this paper we describe BuildingDepot, a system for

data storage and data access for sensor networks within
buildings. We have discussed our design goals and how it
differs from existing systems. We describe our architecture
and how it addresses our original design principles of flexi-
bility, scalability, data sharing, data access, and storage. We
put particular emphasis on how the different services work
together to allow ease of data management for host institu-
tions. By giving full control to host institutions, we hope
to spread its use as a means of sharing building-related data
across the community.

We also present an implementation of BD that we have
deployed on our own campus. As web services are a rapidly
evolving field, we are also continuing to develop the archi-
tecture as new technologies become mature. We are releas-
ing BD as open-source software, and we are in the process of
communicating with other groups and institutions to deploy
BD at their campuses. Based upon our experiences of using
the BD system, we hope to continually improve and upgrade
it while feedback from others will also drive new design de-
cisions. We also hope to iterate over the design with the
research community and present findings from an extended
deployment of the system.

Due to the standardized way of accessing data in Build-
ingDepot, applications written on top of BD can be used on
any BD deployment. This is an extremely useful aspect of
BD, as a rich set of applications can be built that the entire
community can use. To help spur this along, we plan on
releasing useful applications to the community, including a
dashboard that can visualize the data and a graphical build-
ing interface to enable easy actuation and control. This will
allow BuildingDepot to be useful in most use scenarios, al-
lowing end-users such as building managers to simply use
the system as-is without having to worry about developing
their own tools and systems.

The key focus of this paper is the design of the overall sys-
tem and the API that is used to access it. We believe the dis-
tributed nature will help facilitate deployments that are able
to grow as needed and that the API reflects our own strug-
gles with coming up with a solution that is flexible enough
that any institution can tailor it to their needs, but standard-
ized so that applications can be shared.

BuildingDepot is available to download from http:
//www.buildingdepot.org. Both the source code
and an installable package is available. Tutorials and
user documentation is also provided at the website.

7 Acknowledgments
We wish to thank Bharathan Balaji, Panagiotis Vekris and

Seemanta Dutta for their feedback on earlier versions of the
system and their help in benchmarking and improving its
performance.

This work is supported in part by NSF grants SHF-
1018632, CCF-1029783 and a UCSD Facilities smart build-
ing deployment grant.
8 References
[1] Y. Agarwal, B. Balaji, R. Gupta, J. Lyles, M. Wei, and T. Weng.

Occupancy-Driven Energy Management for Smart Building Automa-
tion. In ACM Workshop on Embedded Sensing Systems For Energy-
Efficiency In Buildings (BuildSys), 2010.

[2] Y. Agarwal, B. Balaji, R. Gupta, and T. Weng. Duty-Cycling Build-
ings Aggressively: The Next Frontier in HVAC Control. In ACM/IEEE
Conference on Information Processing in Sensor Networks (IPSN),
2011.

[3] Y. Agarwal, T. Weng, and R. Gupta. The Energy Dashboard: Improv-
ing the Visibility of Energy Consumption at a Campus-Wide Scale. In
ACM Workshop on Embedded Sensing Systems For Energy-Efficiency
In Buildings (BuildSys), 2009.

[4] P. Arjunan, N. Batra, A. Singh, P. Singh, H. Choi, and M. B. Srivas-
tava. SensorACT: A Privacy and Security Aware Federated Middle-
ware for Building Management. ACM Workshop on Embedded Sens-
ing Systems For Energy-Efficiency In Buildings (BuildSys), 2012.

[5] California Energy Commission. CEC End-Use Survey, CEC-400-
2006-005, March 2006. http://buildingsdatabook.eren.doe.
gov/.

[6] S. Dawson-Haggerty, X. Jiang, G. Tolle, J. Ortiz, and D. Culler.
sMAP: A Simple Measurement and Actuation Profile for Physical In-
formation. In ACM Conference on Embedded Networked Sensor Sys-
tems (SenSys), 2010.

[7] D. T. Delaney, G. O’Hare, M. P. Gregory, and A. G. Ruzzelli. Evalu-
ation of energy-efficiency in lighting systems using sensor networks.
ACM Workshop on Embedded Sensing Systems For Energy-Efficiency
In Buildings (BuildSys), 2009.

[8] Department of Energy (DOE). Buildings Energy Data Book, March
2009. http://buildingsdatabook.eren.doe.gov/.

[9] X. Jiang, M. V. Ly, J. Taneja, P. Dutta, and D. Culler. Experiences
with a High-Fidelity Wireless Building Energy Auditing Network. In
ACM Conference on Embedded Networked Sensor Systems (SenSys),
2009.

[10] D. Jung and A. Savvides. Estimating Building Consumption Break-
downs using ON/OFF State Sensing and Incremental Sub-Meter De-
ployment. In ACM Conference on Embedded Networked Sensor Sys-
tems (SenSys), 2010.

[11] Y. Kim, T. Schmid, Z. Charbiwala, J. Friedman, and M. B. Srivastava.
NAWMS: Nonintrusive Autonomous Water Monitoring System. In
ACM Conference on Embedded Networked Sensor Systems (SenSys),
2008.

[12] Y. Kim, T. Schmid, Z. M. Charbiwala, and M. B. Srivastava. ViridiS-
cope: Design and Implementation of a Fine Grained Power Monitor-
ing System for Homes. In ACM Conference on Ubiquitous Computing
(Ubicomp), 2009.

[13] J. Lifton, M. Feldmeier, Y. Ono, C. Lewis, and J. A. Paradiso. A
Platform for Ubiquitous Sensor Deployment in Occupational and Do-
mestic Environments. In ACM/IEEE Conference on Information Pro-
cessing in Sensor Networks (IPSN), 2007.

[14] J. Lu, T. Sookoor, V. Srinivasan, G. Ge, B. Holben, J. Stankovic,
E. Field, and K. Whitehouse. The Smart Thermostat: Using Occu-
pancy Sensors to Save Energy in Homes. In ACM Conference on Em-
bedded Networked Sensor Systems (SenSys), 2010.

[15] A. Rowe, M. Berges, G. Bhatia, E. Goldman, R. Rajkumar, L. Soibel-
man, J. Garrett, and J. M. F. Moura. Sensor Andrew: Large-Scale
Campus-Wide Sensing and Actuation, CMU Tech Report, ECE-TR-
08-11, 2008.

[16] A. Rowe, M. Berges, and R. Rajkumar. Contactless Sensing of
Appliance State Transitions Through Variations in Electromagnetic
Fields. In ACM Workshop on Embedded Sensing Systems For Energy-
Efficiency In Buildings (BuildSys), 2010.

[17] T. Weng, B. Balaji, S. Dutta, R. Gupta, and Y. Agarwal. Managing
Plug-Loads for Demand Response within Buildings. In ACM Work-
shop on Embedded Sensing Systems For Energy-Efficiency In Build-
ings (BuildSys), 2011.

