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Introduction

We generate adversarial examples such that a human perceives
the audio as "Yes” while a machine recognizes it as “No”

» Automatic speech recognition (ASR) is used for
various applications:
digital assistants, smart-home devices, telephone
response.

* Prior work on adversarial attacks focused mainly
on image recognition and object detection models.

» Adversarial attacks can potentially disrupt these

Challenges:

» Existing gradient-based method of adversarial
attacks (e.g. FGSM, DeepFool, Carlini) are not
suited to perform adversarial attacks against
speech recognition models:

* They require the recognition pipeline to be
differentiable.

* Typical automatic speech recognition models
Include steps that compute spectrograms and
MFCC features, these operations are not
differentiable.

* We propose a novel adversarial attack on ASR
based on genetic optimization

* We do targeted attacks not showcased before
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Flowchart: Overview of our genetic algorithm based attack

» Evaluated using Speech Commands dataset.
» 65000 1 second audio files, 10 words

» Perform targeted attacks against 500 random files
of each word to every other word label.

» Generated 4500 output files.
* Average attack success rate = 87%.

Results
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Confusion matrix showing the efficacy of our targeted
adversarial attacks on speech recognition model

* Conducted human experiment with 23
participants who labeled nearly 1500
successful attack audio clips.

 The effect of adversarial noise on the human
perception is negligible.

Attack Labeled as Source|Attack Labeled as Target|Attack Labeled as Other

89% 0.6% 9.4%

Table: Human perception of adversarial examples. Results
from 1500 human labeling of our adversarial audio clips.
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