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ABSTRACT
Reverse-geocoding performs an important function for many
mobile applications, converting geographic latitude & longi-
tude coordinates into real-world physical locations. While
the resulting reverse-geocoded locations can be invaluable
for many mobile apps, the process comes at a high cost:
either battery power must be expended to invoke a cloud
server, or local storage must be used to keep detailed carto-
graphic data to run the process on the phone. In our work
we reduce these costs by exploiting the user’s geolocality and
perform on-smartphone caching of reverse-geocoded loca-
tions obtained from calls to the cloud. To that end, we con-
figured three different geospatial region-definition schemes
(convex hulls, radial boundaries, and our own cartographic
sparse hashes), implemented Android software to perform
this caching, and explored cache propagation via preemptive
pushing. We evaluated our system using a data set of 1.1
million geotagged photos taken with smartphones and show
that our caching: (1) reduces the number of cloud server
calls by over 70% for neighborhood granularity and by over
85% for city granularity; and (2) consumes less than 1MB
of hash-encoded data even for a complete precomputation of
the San Francisco Bay Area.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Communica-
tions Applications
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1. INTRODUCTION
Mobile applications can leverage cloud computing to ac-

cess services that are not bounded by the storage, computa-
tion, and battery limits of smartphones. One such service is
reverse-geocoding, the process of converting a geographic co-
ordinate, commonly expressed as a latitude & longitude pair,
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into a real-world physical location. A smartphone can obtain
its geocoordinate either through GPS or cellular/Wi-Fi tri-
lateration, and then reverse-geocoding will perform the addi-
tional step of providing a human-readable name for that geo-
coordinate, often at multiple resolutions. For example, the
geocoordinate of 37.79522 latitude & -122.40296 longitude,
both in units of decimal degrees, can be reverse-geocoded to
the physical location of “600 Montgomery Street, Financial
District, San Francisco, California, United States.”

This type of named location metadata is invaluable for
mobile applications that provide services based on the user’s
real-world position. For example, on-phone photo albums
can group geotagged photos by city [9], assistive apps can
vocalize to a blind user that he is moving through spe-
cific neighborhoods [2], and digital guidebooks can inform
a tourist that he is standing near historic landmarks [4].

While real-world locations can be a great benefit, per-
forming reverse-geocoding comes at high cost on smartphone
platforms, where applications must send a geocoordinate to
a cloud server to get the reverse-geocoded result. On some
cellular networks, making the invocation can consume much
battery power. For example, using a Samsung Galaxy S IV
smartphone (released in April 2013) on AT&T’s 4G LTE net-
work outdoors in the San Francisco Bay Area, we measured
a reverse-geocoding call to consume 710 mW, while using
GPS to get a geocoordinate – a battery-hungry process in
itself – consumed less at 391 mW. As a result, for scenar-
ios where knowing the physical location many times during
the day would be useful, high battery usage makes repeated
reverse-geocoding server calls prohibitively expensive.

An alternative would be to run the same reverse-geocoding
process on the smartphone, an approach that requires suf-
ficient cartographic data to be stored in order to perform
accurate lookup [21]. Proprietary commercial applications
such as those from Garmin and TomTom allow the user to
purchase and install maps for offline usage, consuming 100s
of MBs to several GBs of storage. We seek a generalized,
non-proprietary, OS-agnostic, and low-storage solution.

In this paper we propose an approach for reverse-geocoding
down to the resolution of neighborhoods and cities/towns
that reduces both the battery cost of invoking cloud servers
and the local storage and monetary costs of using com-
mercial mapping apps. First, we exploit user geolocality
by caching reverse-geocoded locations obtained from server
calls. The key challenge is then to define and manage reverse-
geocoded geospatial regions on the phone in a manner that
enables high accurate hit rates. In our work we evaluated
three schemes to achieve that purpose: convex hulls, radial
bounds, and cartographic hashing. Second, our system can



propagate this data by preemptively filling the user’s cache
with precomputed regions that are pushed to phones.

We evaluated our system in the context of mobile photog-
raphy, where reverse-geocoding can help organize photos.
We used Flickr.com’s public API and downloaded metadata
of over 1.1 million geotagged and timestamped photos that
were taken specifically with smartphones and conducted ex-
perimentation to determine the accurate cache hit rate, a
measure that estimates the joint probability of hits in the
cache that are also ground-truth correct. Our results show
that for the photography-oriented user traces obtained, our
system reduces the number of cloud server calls by over 70%
for neighborhood granularity and by over 85% for city gran-
ularity. Finally, we show that the scheme offers substantial
smartphone local storage as well, with our system occupying
less than 1 MB of storage using our hash encoding even for
a complete precomputation of the San Francisco Bay Area.

The rest of this paper is organized in the following manner.
In Section 2 we describe related work, and in Section 3 we
describe the reverse-geocoding process. We discuss our novel
caching technique in Section 4 and show experimental results
in Section 5. We conclude the paper in Section 6.

2. RELATED WORK
Our work is motivated by the need to reduce the battery

and on-device storage costs of performing repeated reverse-
geocoding for location-based applications, a problem we ex-
plored earlier with a data set of 5000 geolocation points [20].
In this paper we provide caching and propagation of loca-
tions acquired via cloud-assisted lookups on a data set of
over 1.1M photos. To the best of our knowledge, ours is the
first work that addresses this problem and offers a general
and open solution.

Reducing power used by location-based applications on
constrained mobile devices is an important topic that has
been discussed in other work. GPS is the usual culprit, and
other researchers have looked for solutions, such as inferring
user behavior from lower-power sensors like the accelerom-
eter to intelligently trigger GPS (e.g. [5, 23]), observing
user speed (e.g. [13, 7]), and offloading functionality to
servers (e.g. [14]). Our work is complementary; instead of
addressing GPS, we identify a higher battery-cost operation,
reverse-geocoding, that can be called repeatedly by applica-
tions, and we apply our effort at reducing this consumption.

Other work has looked at data-mining interesting loca-
tions obtained from GPS traces (e.g. [22, 3]) using offline
desktop computation. Here, we use the user’s geolocality to
perform caching performed entirely on the smartphone.

We look to partition a metric space into regions, a goal
similar to machine learning classifiers such as SVM or Deci-
sion Trees. Our feature space is very small (only two dimen-
sions), reducing the need for a sophisticated classifier on a
battery- and memory-constrained phone.

3. REVERSE-GEOCODING
In this section we describe reverse-geocoding, give a brief

overview of the relevant terminology and applications, and
explain why current solutions face many challenges.

3.1 Applications
Geocoding converts a human-readable query for a street

address or landmark into a latitude & longitude coordinate.
The process involves canonicalization of the query, searching

Figure 1: Our album groups photos by place and time.

through an index of ground-truth locations, and producing
the associated geocoordinate. In the absence of an exact
match to any known location, interpolation is performed to
estimate the geocoordinate.

Reverse-geocoding naturally performs the opposite func-
tion. Given a geocoordinate as input, its output is a named
location at multiple resolutions. For example, the result can
describe a location by its name, street address, neighbor-
hood, county, city, state, and country.

In this paper we focus only on reverse-geocoding, which we
distinguish from mapping, the process of projecting a geo-
coordinate onto a graphical map. We further concentrate
on reverse-geocoding to neighborhoods and cities/towns (al-
though we will extend our work to street-granularity in the
future) because it already enables many application scenar-
ios that do not have a need for mapping or routing at a
street level. Instead, such applications rely only on named
locations and thus may make repeated reverse-geocoding re-
quests throughout the day, such as:

• Audible guidance for the blind: Assistive applications
can vocalize human-understandable location names for
visually-impaired users living in a city (e.g. [2]).

• Tourism: Visitors who are within the vicinity of a land-
mark can be informed what they are near (e.g. [4]).

• Life-logging: Applications can perform continuous life-
logging into a diary so users can review what neighbor-
hoods and towns they have been through (e.g. [8]).

To make our work concrete, we ground our discussion for
the remainder of this paper in the context of mobile smart-
phone photography. Our own mobile app, shown in Fig-
ure 1, is in this domain. Mobile smartphone photography is
important because in the last several years smartphone cam-
era usage has increased significantly, with estimates on the
order of millions of photos being taken by smartphones on
a daily basis, out-pacing traditional point-and-shoot digital
cameras [6]. Further, we can take advantage of data from
photo-sharing websites, such as Flickr, in order to get geo-
tagged and timestamped photos for testing our algorithms.

Grouping photos into disjoint albums is a popular use
case for smartphone photography, where the groupings are
based on the city or neighborhood where the user took the
photo [9, 19]. The location can be determined from geoco-
ordinates usually embedded into photo metadata, such as



JPEG EXIF headers. Our mobile app groups photos by
locations acquired through reverse-geocoding lookups.

3.2 On-device reverse-geocoding challenges
To perform reverse-geocoding effectively, ground-truth spa-

tial data must be collected accurately and exhaustively to de-
scribe physical locations. Spatial indexes such as R-Trees [11,
21] are then built to enable logarithmic search time. Com-
panies providing mapping data, such as Navteq (owned by
Nokia), Tele Atlas (owned by TomTom), and Google, in-
vest heavily in street-level mapping, and because mapping
is considered a killer feature for modern smartphones, col-
lected data is kept proprietary for competitive advantage.

The nature of the data and the spatial index provides
insight into why offline reverse-geocoding is problematic.
First, and obviously, accuracy is impacted by the amount
of data stored. If a location is missing from the index, then
a search must settle for either nearby objects or a coarser-
grained description. Further, unlike geocoding where the
resulting answer is a geocoordinate with continuous num-
bers, missing real-world locations cannot be as easily inter-
polated. As a result, providing accurate reverse-geocoding
results improves with more data. Since phones can be space-
constrained, keeping a finely-detailed index is challenging.

We note that at the time of this writing, some commercial
(non-free) offline mapping applications are available for iOS,
Android, and Windows Phone, including those from Nokia,
Garmin, and TomTom. The offline map data can span from
100s of MB to several GB depending on the region. It is im-
portant to note that while some mapping applications listed
in the app stores may state that the software is free-of-cost
and occupies space on the order of 25 MB, the user must
purchase and download the map data separately. This ap-
proach does not exploit geolocality of a user who very rarely
leaves his metropolitan region, and as a result may unneces-
sarily consume phone storage. Also, some applications sell
the map data as a subscription, incurring ongoing charges.
These storage and monetary costs inform our decision to find
a non-proprietary, OS-agnostic, and low-storage solution.

Finally, updating the index may produce inefficient trees.
Because cartographic data may change often due to urban
construction, the index structure must change as well, lead-
ing to poorer performance compared to indexes built from
scratch. For this reason and others, updates to offline map-
ping applications almost always require that the user down-
load entirely new data, which incurs a non-negligible delay.

3.3 Cloud-assisted reverse-geocoding challenges
Given the space requirements for detailed cartographic

data and the need to perform updating of the spatial indexes,
mapping and reverse-geocoding services are most commonly
accessed through online cloud services that can leverage the
availability of TB-sized data stores (for example, Earth data
provided by the open-source OpenStreetMap is about 330
GB in raw, unindexed form [15, 17]). On Android and
iOS, there exist native API for performing reverse-geocoding
by calling cloud servers, and in the absence of such dedi-
cated API, programmers can still perform reverse-geocoding
through RESTful HTTP calls to Google[10], OpenStreetMap
Nominatim [16], and other services.

The resulting problem is that these online calls are costly
in terms of battery power. For example, in our photography
context, suppose the user is out taking photos, such as on

a weekend or vacation trip, and wants to view his grouped
albums several times during the day; invoking a server-side
process for reverse-geocoding lookup of one or a few photos
at a time would then incur increased power consumption.
We quantified this expenditure using a Samsung Galaxy S
IV smartphone, where we measured reverse-geocoding invo-
cations to Nominatim over 4G LTE to consume, on average,
twice the power of GPS. While battery consumption due
to wireless data usage is an issue for any cloud-connected
mobile app, it is especially problematic for the types of ap-
plications we consider since by their nature, the user is often
out of the range of Wi-Fi and still needs to make repeated
reverse-geocoding requests during the day.

In addition to battery use, other potential problems are:

• Calling the server incurs a wireless hop delay and a
server processing delay.

• Using cellular data will incur wireless provider mone-
tary charges, depending on the user’s data plan.

• The reverse-geocoding service provider may enforce a
quota limit that repeated requests may exceed.

• Finally, from the viewpoint of the reverse-geocoding
service provider, fulfilling requests from potentially thou-
sands or millions of mobile app users each day can be
burdensome in terms of CPU load.

4. CACHING AND PROPAGATING REVERSE-
GEOCODED LOCATIONS

4.1 Overview
In the previous section, we discussed mobile apps that

leverage named physical locations and described the cur-
rent limitations of performing repeated lookups: on-device,
offline commercial mapping apps consume storage and mon-
etary expenses, while server invocation (the most common
practice) consumes battery due to data transmission.

Our approach looks to exploit geolocality in order to min-
imize both on-smartphone storage and server-assisted calls.
For many application domains, user mobility is often limited
in reality to intra-metropolitan regions. For example, from
our 1.1M photo metadata set, we observe that users often
take hundreds of photos (presumably at a special event, on
vacation, or on a weekend trip), all within a relatively small
region spanning a few neighborhoods.

We take advantage of geolocality in two specific ways:

• We perform caching of geospatial regions whose ground-
truth location names are obtained from reverse-geocoding
servers (running OpenStreetMap Nominatim). We im-
plemented three schemes and ran our caching on An-
droid. Our system is described in subsection 4.2.

• We also explore the opposite end of the communica-
tion versus storage tradeoff: instead of lazily storing
visited regions, we can precompute hashed boundaries
and preemptively push them to the phone. This pre-
emptive propagation is described in subsection 4.3.

4.2 Caching

4.2.1 Cache operation
In our Android implementation, the cache is maintained

mostly in memory with a SQLite backing store. The cache
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Figure 2: Caching algorithm decision flow.

operates using the logical flow in Figure 2. After an app
acquires a geocoordinate (e.g. via GPS), it can call our com-
ponent to get the location name. Our system then checks
to see if the geocoordinate is in a cached region that has
already been ground-truth labelled with a name. If there is
a hit, then the location name is returned to the application,
but note that this location is inferred from previously-cached
data, where the accuracy of the inference is affected by the
region definition scheme, as discussed below.

If there is instead a cache miss, then the system makes a
call to a reverse-geocoding server to get a ground-truth lo-
cation name. In our work we use OpenStreetMap data and
the Nominatim reverse-geocoding service that we installed
on our own Linux servers. After reverse-geocoding com-
pletes, the geocoordinate and its labelled name are added
to the cache. A separate table maintains the name strings;
with 1000 unique location names taking on average 40 2-byte
characters, the lookup table will consume 80 kB. The name
is then finally returned to the application.

Our caching system is characterized by the following three
asymptotic probabilities:

Pr(hit) =
Requests answered with cached geolocation

Requests made to cache
(1)

Pr(correct|hit) =

Requests answered with correct geolocation

Requests answered with cached geolocation
(2)

Pr(correct, hit) = Pr(correct|hit) × Pr(hit) (3)

Equation (1) is the cache hit rate, a traditional measure-
ment for caching strategies. Here, it is the proportion of
reverse-geocoding requests that can be answered (correctly
or incorrectly) by the cache without having to call a server.

In our case, although a geocoordinate may be in a cached
region, that matching region may be labelled with a different
name than where the geocoordinate actually is. For exam-
ple, suppose the neighborhood of Chelsea, New York City,
is cached but with a region defined to be the Earth. A sub-
sequent request for a California geocoordinate would result
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Figure 3: The three geolocation caching schemes we
evaluate: convex hull (left); radial bounds (center);
and Cartographic Sparse Hashing (right).

in a cache hit, but the inferred Chelsea location would be
inaccurate. We use Equation (2) to define this accuracy.

Inaccuracy can be assuaged by two means. First, the user
or developer can set the cached region to be finer, but this
adjustment may decrease both the cache hit rate and the ac-
curate cache hit rate, discussed below. Second, if a user can
manually identify a mislabeled location, then the system can
take the same steps as it would for a cache miss, retrieving
a ground-truth name from the cloud, re-labelling the cached
geocoordinate, and returning the name to the application.
Importantly, we always assume the worst case where a server
call is made for all inaccurately inferred results.

Equation (3) is the accurate cache hit rate, the joint
probability that there is a cache hit and an accurate result.
This metric is extremely informative because it describes
the proportion of all reverse-geocoding requests that can be
accurately resolved in the cache without having to call a
server. If we assume that in the absence of the cache that
N reverse-geocoding server calls need to be performed, then
we can state that a caching system with an accurate cache
hit rate P will invoke the server N × (1.0− P ) times.

The key challenge to performing caching of location names
is defining and managing the cached regions in order to en-
able a high accurate cache hit rate. We next discuss three
schemes that implement this region management.

4.2.2 Convex Hull
Consider an application that asks for reverse-geocoding

for three geocoordinates, shown as points 1, 2, and 3 on the
left-hand side of Figure 3. All three produce a cache miss,
resulting in a cloud-assisted reverse-geocoding call. If all
three points share the same location, then we can form a
bounding convex hull around them and assign the hull that
location name. Suppose the app then requests a name for
the query point Q that lies within the hull; the query is thus
a cache hit, with the point being labelled with hull’s inferred
location. Note that since Q is inside the hull, it is not added
to the cache. Further, suppose that the application acquires
another geocoordinate, shown as point 4. Since this point
lies on the outside of the hull, it is a cache miss and thus
requires a cloud-assisted lookup. Now, if this point happens
to have the same location name as the other points 1, 2, and
3, then the convex hull can be extended to cover point 4.

To efficiently find covering hulls, we place hull points in an
R-Tree index. For H hulls with M points on average, this
approach runs in O(lg(HM) + M). An advantage is that
potentially few points are needed to define a large region.

4.2.3 Radial Bounds
Our next region definition and management scheme, shown

in the center of Figure 3, is based on a query point, a fixed ra-



Figure 4: Preemptive precomputed hashes.

dius r, and the resulting bounding circle that can be formed
around the point. Suppose initially the application has re-
quested points 1 and 2, found them to be cache misses, and
added them and their ground-truth locations into the cache.
Now, for a new query geocoordinate at query point Q, the
cache is searched to find the nearest point within distance r
to Q. We use an R-tree to store the points, and to compute
distances, we use a Haversine estimation for two geocoordi-
nates upon a spherical surface (where the sphere has been
modeled with the dimensions of Earth).

In this example, the result is point 1, and so point 1’s
location name is assigned to the query point Q. Note that
Q is not added to the cache since its city location was in-
ferred, not obtained through a ground-truth reverse geolo-
cation lookup. If there are N points kept in an index, then
this nearest-neighbor query can be answered in O(lg N) on
average. The disadvantage is that in order to achieve a high
accurate hit rate, many points must be kept in the cache.

4.2.4 Cartographic Sparse Hashing (CASH)
Our third scheme uses the implicit formation of square

boundaries formed throughout the geocoordinate space, as
shown on the right of Figure 3. Here, the query point Q is
hashed to the same implicit square as point 1, which was
already in the cache, and so Q is given the same location
label. Note that Q is not added to the cache.

Each square is formed through Cartographic Sparse Hash-
ing (CASH), our hash algorithm that takes as input (i) lat-
itude and longitude as 64-bit floats and (ii) a resolution in
meters. It then outputs a 64-bit integer, where the hashed
components for the longitude and latitude end up in the high
and low bits, respectively. (Due to space constraints, we de-
fer detailed code for another paper.) This final hash key is
then used in lieu of geocoordinates in the cache. To better
compare this scheme with radial bounds, we define a square
boundary based on a radius r that describes a circumscribed
circle around a square whose side is L =

√
2 · r. We use this

value of L as the resolution given to the hashing function.
The advantage of this scheme is that cache search is O(1),

but like the radial bounds scheme, it suffers from needing
many cached points to achieve a high accurate hit rate.

4.3 Preemptive cache propagation through pre-
computed hashing

One of our goals was to reduce on-device storage by keep-
ing a small set of cached regions. Here, we consider what
advantages could be gained by relaxing this requirement by
first offline precomputing regions for an entire metropolitan
area and then pushing the results to pre-fill location caches.
Such an approach could improve the hit rate Pr(hit) while
not adversely affecting the accuracy Pr(correct|hit).

Our approach is illustrated in Figure 4. Consider an arbi-
trary geometry, shown by the dark outline, that represents a
boundary. We subdivided the region into squares with r =
500 m, took points every 100 meters per linear side, and per-
formed ground-truth reverse-geocoding at each point. Ho-

Activity Ave. power

GPS 391 mW
Reverse-geocoding, 4G LTE 710 mW
Reverse-geocoding, 4G HSPA 381 mW

Table 1: Measured power consumption. GPS was
averaged over 300 seconds, while reverse-geocoding
was averaged over 30 calls.

mogeneous squares have all points with the same name and
are thus labelled with that name; these are the grey squares
in the figure. Heterogeneous squares occur on the borders.

We then packaged the homogeneous regions (comprising
their hashed value using CASH and their geolocation name)
and pushed them to phones to pre-fill the caches. Because
heterogeneous regions are not included, geocoordinates falling
into such regions would be a cache miss. For the entire San
Francisco Bay Area covering 9043 km2, this approach pro-
duced 32,458 homogeneous squares for city granularity. At
16 bytes per entry, including the name lookup table dis-
cussed earlier, the pre-filled cache occupies 587 kBytes.

5. EXPERIMENTS
We implemented and tested the reverse-geocoded location

caching system on Android smartphones. Lab members took
photos and used our album app to group together photos by
city and neighborhood. The algorithm worked as expected,
but to fully evaluate it, we conducted offline experiments
using the same Java codebase but on a much larger data
set: 1.1M publicly-available smartphone photos from Flickr.
This section describes the experimental results.

5.1 Power consumption
We first evaluate our fundamental assumption that re-

peated reverse-geocoding operations can be a significant bat-
tery drain. As mentioned in Section 3, smartphones com-
monly perform reverse-coding by calling a cloud server. Cur-
rently in the USA, commercial wireless ISPs such as AT&T
and Verizon offer 3G and 4G, with connectivity over 4G LTE
and 4G HSPA providing the highest bandwidth.

We thus looked to determine the power consumption of
making a RESTful invocation to the public Nominatim server
[16] to perform reverse-geocoding. In our tests we used a
commodity Galaxy S IV smartphone and measured its power
use outdoors with a Monsoon Solutions Power Monitor hard-
ware power meter. We were very careful to deactivate irrele-
vant background processes, turn off the screen, and keep the
CPU awake with an Android wakelock.

Our results are shown in Table 1. Using GPS to acquire
a geocoordinate took about 391 mW, which includes idle
CPU power. The power needed for reverse-geocoding over
4G LTE was almost twice as much at 710 mW, while the
slower 4G HSPA consumed on the same order as GPS.

We can also estimate the consumed energy (in Watt-hours)
following a model where power is integrated over time. Sim-
ilar to [18], we found that our test phone exhibited a tail
power state where the LTE radio remains consuming power
even after a network invocation ends; as a result, each call
kept LTE on for 10.12 seconds on average.

In our work, we found mobile photographers that took
over 250 photos in one day, and for life-logging applica-
tions that take geolocations every 2 minutes, 576 reverse-
geocoding calls would be needed. If we evaluate our power



Figure 5: Some photos from the San Francisco Bay
Area comprising 194K photos and 68 cities/towns.

model with 400 such calls per day, we estimate an energy
expenditure of 0.79 Wh, or over 8% of our phone’s 9.88 Wh
battery. We measured our fully-charged phone to last be-
tween 12 and 18 hours on average with active use, so our
estimation roughly equates to be between 1 and 1.4 hours
of battery life. These observations suggest that having mo-
bile apps make repeated calls to online servers for reverse-
geocoding can cause a substantial drain, especially since each
reverse-geocoding call is preceded by a GPS invocation.

5.2 Data set
To fully test our system, we focused on the context of

mobile photography and the application-driven need for re-
solving photos to city and neighborhood locations in order
to form photo album groupings while the user is out tak-
ing photos. We posit that this behavior may be representa-
tive of other location-based applications that need repeated
reverse-geocoding during the day, such as those discussed in
Section 3.1. We will explore other apps in future work.

Our data comprised over 1.1 million photos taken in the
USA from Flickr.com. We queried for photos taken between
September 1, 2009, and September 1, 2013, that were specif-
ically taken with smartphones in order to obtain the closest
trace possible to mobile photo-taking behavior.

Each retrieved photo was timestamped and geotagged with
latitude & longitude coordinates. We assumed that the co-
ordinates were produced by the phone’s geolocation service
when the photo was taken. We then obtained a ground-
truth city and neighborhood for each photo by performing a
reverse-geocoding lookup against OpenStreetMap data and
the Nominatim service, both of which ran on a local server.

Attributes of this data were: 1,109,311 photos; 37,237
users; 34 states; 2062 cities/towns; and 3759 neighborhoods.
We show plots for the San Francisco Bay Area in Figure 5.

On average, each Flickr user had 29.8 photos, but we note
four things. First, Flickr albums are curated, so while a
user may take many photos in a day, only some photos may
be uploaded. Second, the distribution of photos per user is
long-tailed where the head comprises users with thousands
of photos, with an observed maximum of 5646. Third, while
Flickr is popular, people are increasingly using Facebook, so
Flickr may not be fully representative of mobile photography
users . Finally, the 2062 cities/towns varied widely, including
those with dense centers (e.g. Chicago, IL), sprawls (e.g. Los
Angeles, CA), and low tourism (e.g. Oklahoma City, OK).

5.3 Schemes
We evaluated our system using the three region-management

schemes from Section 4.2 and a fourth that serves as a base-
line. The cache is always started completely cold (empty).

• Convex Hull: The convex hull containment scheme.

• Radial: The radial bounds scheme parameterized at
500, 1000, and 2000 meters.

• CASH: The cartographic sparse hashing scheme pa-
rameterized at 500, 1000, and 2000 meters.

• Time: This scheme serves as a baseline comparison
with expiration times of 5 and 60 minutes. We assume
that the caching system keeps exactly one previous ge-
olocation name. If a request is made within the expi-
ration time, then a cache hit occurs, returning the one
geolocation name. If not, then it is a cache miss.

5.4 Case study for single user
We first evaluate our system in the context of a single user

case study in order to gain insight at a microscopic scale. We
will then evaluate the system at a macroscopic scale for all
37,237 users in the next section.

We selected a random user from our data set and found
a subset of 519 photos that were taken over the 3-day span
of August 12-14, 2011. We sorted the photos by ascend-
ing timestamp and iterated over them to request reverse-
geocoded neighborhood and city/town locations from our
caching system, simulating user behavior as if he were re-
questing reverse-geocoding lookup while taking his photos.

The first data row in Table 2 shows the observed relative
frequency for each candidate geocoordinate’s request achiev-
ing a hit in the cache using the granularity of neighborhood;
this relative frequency approximates the underlying asymp-
totic probability Pr(hit). Note that for both the Radial and
CASH strategies, a larger radius intuitively produces more
hits. Convex Hull produces a low hit rate for this user; when
we traced him on a map, we found that he was moving along
the perimeter of what would have been an enclosing hull.

The second row of Table 2 shows the relative frequency for
accurately-inferred neighborhoods given that a hit occurred,
approximating the asymptotic probability Pr(correct|hit).
Note for Radial and CASH, a small radius has higher accu-
racy because it is less likely to contain mixed geolocations.

The third row of Table 2 then shows the joint relative
frequency of both a cache hit and an accurate inference at
the neighborhood granularity, approximating the probabil-
ity Pr(correct, hit) = Pr(correct|hit)·Pr(hit). Both Radial
and CASH evaluate well here for this user, producing neigh-
borhood accurate hits in excess of 80%. The Convex Hull
scheme overall scores poorly because its low coverage of re-
gions significantly reduce its accuracy for contained regions.
Both Time schemes perform better than Convex Hull.

The last row of Table 2 shows the accurate cache hit rate
at the granularity of city/town. As expected, the coarser
regions of cities produces a higher accurate hit rate versus
finer-grained neighborhoods due to improved accuracy.

We can explore the caching mechanism behavior in more
detail by looking at the accurate cache hit rate as this user
takes one photo after another. In Figure 6 we show the
cumulative accurate cache hit rate for CASH parameterized
at 1000m with city granularity. The rate is computed after
each of the user’s photos is taken, where the cache starts
cold but quickly ramps up as the user takes more photos.

Figure 7 shows an estimate of the number of server calls
at city and neighborhood granularity. For example, CASH
at 1000 meters achieves an accurate cache hit rate of 0.802
at neighborhood granularity, as was shown in the third row



Probability Convex Hull
Radial
(2000m)

Radial
(1000m)

Radial
(500m)

CASH
(2000m)

CASH
(1000m)

CASH
(500 m)

Time
(60 min)

Time
(5 min)

Pr(hit), neighborhood 0.553 0.946 0.927 0.906 0.925 0.915 0.884 0.811 0.665
Pr(correct|hit), neighborhood 0.962 0.802 0.865 0.887 0.869 0.876 0.946 0.886 0.930
Pr(correct, hit), neighborhood 0.532 0.759 0.802 0.803 0.803 0.802 0.836 0.719 0.618
Pr(correct, hit), city 0.617 0.900 0.884 0.867 0.882 0.879 0.846 0.763 0.638

Table 2: Caching results for sample single user.
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Figure 6: Cumulative accurate cache hit rate for
one user, city granularity, using CASH (1000m) as
photos are being taken. The cache starts cold.
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Figure 7: Number of calls to servers for one user.
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Figure 8: Hit rate & accuracy for CASH, varying radii.

of Table 2. The result is that only 0.198 of the user’s photos
will result in a cloud invocation, or 103 out of the 519 photos.

5.5 Evaluation for 37K users
We can apply insight gained from our previous single-user

case study toward the entire 37,237-user data set. As we saw,
the accurate cache hit rate Pr(correct, hit) is a meaningful
metric that characterizes how often the cache can fulfill an
app’s reverse-geocoding request without having to call the
cloud. To evaluate our schemes with this metric over all the
users, we conducted similar experiments.

In Table 3, we show the average accurate cache hit rate
at neighborhood and city granularity, revealing two trends.
First, Radial and CASH produce approximately the same
results, and both are superior to Convex Hull and Time.
Second, for both Radial and CASH, a finer radius produces
a higher average accurate hit rate for neighborhood, but
the opposite is true for city. (This behavior was also visi-
ble in the one-user study but is very evident over the entire
data set.) The reason is that while both neighborhood and
city produce the same hit rate reduction with decreasing ra-
dius, neighborhood’s accuracy increases substantially more
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Figure 9: Average number of cached points per user
across all users.
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Figure 10: Distribution of cached points per user,
top-1000, after running CASH (1000m).

than city’s accuracy. Figure 8 illustrates this phenomenon
by drilling down into CASH behavior at 2000m, 1000m, and
500m. While both neighborhood and city suffer the same
8.1% decrease in hit rate Pr(hit) over that span, neighbor-
hood’s accuracy Pr(correct|hit) increases by 20.2% whereas
city’s accuracy increases by only 2.5%.

Radial and CASH exhibit similar accurate cache hit rate
performance, but CASH provides a faster O(1) cache lookup
time. Furthermore, CASH configured with a parameter of
1000m demonstrates good accurate cache hit rate of over
70% for neighborhood granularity and over 85% for city
granularity, both of which represent the reduction in the num-
ber of server calls that would have been needed to perform
reverse-geocoding. We thus use CASH parameterized at 1000m
as the base configuration of our system, but we allow the
developer or user to configure the scheme and parameters
depending on application requirements.

Figure 9 shows the average number of points in each user’s
cache after iterating over all photos. These averages are mis-
leadingly low because the distribution of photos per user is
long-tailed, and thus users at the head of that distribution
will have substantially more cached points. Figure 10 shows
the distribution of cached points for each of the top-1000
users, ranked by the number of points, for CASH parame-
terized at 1000m. The head user has only 659 points in his
cache, which is approximately 90 kBytes in encoded form.

5.6 Precomputed hash propagation
In Section 4.3 we considered hashes that were precom-

puted offline and then pushed to the user, thereby pre-filling
the cache. In this separate experiment we created precom-
puted hashes of the San Francisco Bay Area at city gran-



Probability Convex Hull
Radial
(2000m)

Radial
(1000m)

Radial
(500m)

CASH
(2000m)

CASH
(1000m)

CASH
(500m)

Time
(60 min)

Time
(5 min)

Pr(correct, hit), neighborhood 0.520 0.642 0.705 0.731 0.652 0.700 0.721 0.553 0.475
Pr(correct, hit), city 0.703 0.889 0.876 0.850 0.877 0.859 0.827 0.644 0.508

Table 3: Caching results for all 37,237 users.
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Figure 11: Improvements due to propagation of pre-
computed CASH hashing at 500m.

ularity with the smallest radius of 500 meters to maximize
the number of needed points. We then pre-filled the caches
for the 8190 users who took photos in this region.

Figure 11 shows the results for the three key probabili-
ties Pr(hit), Pr(correct|hit), and Pr(correct, hit) using the
precomputed hashes and the “lazy” on-demand caching that
we have been using throughout the paper. As expected, pre-
filling the caches greatly improves the cache hit rate because
there are more entries in the cache. For each of those hits,
the accuracy remains the same because the size of the region
entry does not change. The overall result is the accurate
cache hit rate increases by 21%.

6. CONCLUSION
Reverse-geocoding plays an important role for many mo-

bile pervasive applications by converting latitude & longi-
tude coordinates into physical locations in the real world.
However, commercial proprietary on-device mapping appli-
cations incur storage and monetary costs, while cloud-assisted
lookup incurs battery discharge costs, the latter being the
current best practice for reverse-geocoding. In this paper
we reduced these costs by exploiting user geolocality and
caching reverse-geocoded locations that were obtained from
server calls. Using a 1.1M photo dataset, we showed that
our cartographic sparse hashing scheme reduces the number
of cloud server calls by over 70% for neighborhood granu-
larity and by over 85% for city granularity. We additionally
explored pre-filling user caches with hash results, which im-
proved the caching hit rate. Finally, we showed that the
system occupies relatively little space, with less than 1 MB
of data being used by our hash encoding even for a complete
precomputation of the San Francisco Bay Area.

In the future, we will look to expand our work by caching
at street-level resolution, using other application scenarios,
and measuring energy usage for entire days.
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