
meSDN: Mobile Extension of SDN

Jeongkeun Lee,1 Mostafa Uddin,2 Jean Tourrilhes,1 Souvik Sen,1 Sujata Banerjee,1
Manfred Arndt,3 Kyu-Han Kim,1 Tamer Nadeem2

1HP Labs, 2Old Dominion University, 3HP Networking

ABSTRACT
Mobile devices interact wirelessly with a growing prolifer-
ation of cloud-based applications. Due to significant traf-
fic growth and a wide variety of multimedia solutions, en-
terprise IT departments are demanding more fine-grained
visibility and control of mobile traffic. They want to de-
liver optimal performance and a high quality of experience
to a variety of users and applications. In the wired world,
Software-Defined Networking (SDN) is a technology being
embraced to deliver performance guarantees to end users by
dynamically orchestrating quality of service (QoS) policies
on edge switches and routers. Guaranteeing performance
in a wired access network does not require any network
control on clients, because the last hop between the net-
work edge and wired device is a dedicated point-to-point
link (e.g. Ethernet). However, this is not the case with
wireless LANs (WLAN), since the last hop is a shared half-
duplex medium and the WiFi MAC protocol does not al-
low access points to coordinate client uplink transmissions
or 802.11 QoS settings. Hence, we argue that the SDN
paradigm needs to be extended to mobile clients to pro-
vide optimal network performance between the cloud and
wirelessly-connected clients. In this paper, we propose a
framework called meSDN and demonstrate that it enables
WLAN virtualization, application-aware QoS and improves
power-efficiency from our prototype on Android phones.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Centralized networks

Keywords
SDN, OpenFlow, WLAN, mobile

1. INTRODUCTION
Recent mobile cloud applications require guaranteed net-

work performance more than conventional client-server ap-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MCS’14, June 16, 2014, Bretton Woods, New Hampshire, USA.
Copyright 2014 ACM 978-1-4503-2824-1/14/06 ...$15.00.
http://dx.doi.org/10.1145/2609908.2609948.

SDN
controller

app
demand?

app
servers

mobile
clients

mobile cloud

Figure 1: Mobile-Network-Cloud interactions.

plications as such mobile applications incur tight and real-
time interactions with cloud and sometimes offload network-
intensive workloads to cloud [1,2]. In a wired infrastructure,
Software-Defined Networking (SDN) APIs is used to guaran-
tee performance by dynamically coordinating network edges,
mostly Ethernet switches. Recent SDN controllers also in-
teract directly with cloud-based application servers to com-
municate application specific requirements [3]. This
SDN(network)↔cloud(server) interaction, together with the
existing mobile(client)↔cloud(server) interaction, aims to
deliver application-optimized network performance and even-
tually bottleneck-free computing experience to users.

Mobile(client)↔SDN(network) interaction is very essen-
tial to complete the loop between mobile, SDN and cloud
(Figure 1). Knowing the application requirement from the
cloud(server), it is important for the SDN(network) to pro-
vide performance guarantee to the client device. Unfortu-
nately, the control of the existing SDN frameworks stops at
the network edge, either at enterprise edge switches [4], data-
center hypervisor virtual switches [5] or home routers [6]. In
wired environments, SDN policy can be effectively enforced
on the traffic to/from end devices without modifying the
end devices since the last hop is a point-to-point full-duplex
link and transmissions from end devices do not interfere with
each other. However, this is not the case with wireless LANs
(WLAN), since the last hop is a shared half-duplex medium
and the WiFi MAC protocol does not allow access points
(APs) to coordinate client uplink transmissions.

SDN-enabled APs and infrastructure, such as OpenRadio
and OpenRAN [7, 8], can control wireless resource usages
for AP-to-client downlink transmissions; but they cannot
control uplink traffic, which also interferes with downlink
transmissions due to the half-duplex MAC of WiFi. Thus,
AP-side control only cannot guarantee wireless resource for
both uplink and downlink. Without resource guarantees,
the performance experienced by end users can be highly
unpredictable even with high transmission rates of recent
802.11n/ac.

In addition to uplink transmissions, we should also man-
age uplink 802.11 QoS specification. For example, one client
greedily setting its every uplink transmission as high prior-
ity can unfairly dominate the air-time resource; client-side
QoS control via SDN APIs can prevent such unfair resource
usage across network slices and also within the same slice.
Because it is a shared medium, the wireless link is often the
most critical from an end-to-end QoS perspective and most
likely to define the performance perceived by the application
and user. By integrating SDN APIs in the client device, we
can manage uplink QoS over the shared wireless medium,
and provide truly end-to-end QoS control.

In this paper, we argue that extending SDN control to end
devices can support client↔network interaction capabilities
and services such as guaranteeing airtime resource and E2E
QoS for mobile clients. We propose a framework, meSDN 1

(mobile extension of SDN), that utilizes Open vSwitch [5] in
monitoring and managing mobile’s application traffic. meSDN
also provides application-awareness. To set and enforce SDN
policies correctly, we need accurate, fine-grained and trusted
information of the user applications generating network traf-
fic. Since meSDN resides on the client devices, it easily
obtains the client application information and uses it for
pTDMA scheduling and QoS control.

As a proof-of-concept, we use meSDN framework to de-
sign, implement and evaluate a WLAN virtualization service
that slices end devices using a Time Division Multiple Ac-
cess (TDMA) like airtime scheduling, named pseudo TDMA
(pTDMA), that runs on top of 802.11 MAC. By using a mod-
ified Linux Qdisc on end devices, pTDMA virtualizes (sep-
arates) airtime resource between network slices while min-
imizing contention between clients within a slice. pTDMA
also allows client WiFi interfaces to more efficiently utilize
their active time and to sleep longer outside of the given
transmission windows. We will present meSDN ’s network
virtualization capability and its improved power-efficiency
from our prototyping on Android phones.

2. THE CASE FOR meSDN
Why SDN at mobile endpoints? In meSDN , we bring

the client device’s apps and their network usage into the
SDN framework by running an agent in the client device,
which is controlled from the network infrastructure. This
concept of centrally managed agent software monitoring and
controlling client devices is starting to become mainstream
due to the Bring-Your-Own-Device (BYOD) phenomenon in
enterprise networks. Enterprises have been deploying man-
agement software on their employee devices including per-
sonal mobile devices, to ensure device health, security and
to protect corporate data stored in the devices [9]. Vir-
tual Private Network (VPN) client software often perform
bandwidth and access control on end devices. Mobile WAN
optimization solutions use client-side software that inter-
acts with a network proxy to optimize end-to-end perfor-
mance [10].

However, to our best knowledge, none of them brought
the client software into the SDN framework or tried direct
coordination between the client agent and the network in-
frastructure (e.g., WLAN APs) to enable an integrated E2E
solution. We believe that running special-purpose client soft-
ware is akin to extending opaque network middleboxes into

1Pronounced as ‘mee-SDN’

end-devices and further fragmenting and complicating the
control and management planes. Instead, a better option
would be to extend existing open and powerful SDN APIs
and the associated control framework to the client side to
support enhanced security, QoS and WLAN virtualization.

With the SDN APIs in clients, meSDN can enforce SDN
polices directly on the client uplink traffic, for example,
Call Admission Control (CAC) for resource management
and Network Access Control (NAC) for security. CAC and
NAC can be enforced at network edges but cannot pre-
vent the controller traffic from consuming wireless resources.
meSDN can avoid such wasted transmissions and can bene-
fit all WLAN users. meSDN can also better utilize multiple
wireless interfaces on a multi-homed mobile device [11].

Mobile devices today are capable of fulfilling the role of ex-
tended SDN control since smartphones, tablets and laptops
are becoming more powerful, as opposed to CPU-limited
wireless APs and Ethernet switches.

WLAN Virtualization is becoming a key to enable a
more effective sharing of wireless resources by a diverse set
of users with diverse requirements. For example, mobile car-
riers want to obtain a guaranteed share of RF resources on
public WiFi infrastructure (e.g., in an airport) to offload
their subscribers’ data traffic to WiFi. Enterprises/Homes
want to virtualize their WLAN infrastructure to create dif-
ferentiated service networks, e.g., an employee/parents net-
work vs. a guest/kids network. This kind of virtualization is
already happening in cellular networks, e.g., Mobile Virtual
Network Operators [12], and there is a clear need to extend
this capability to WLANs.

The existing SDN mechanism for virtualizing the wired
Ethernet infrastructure is not directly applicable to virtual-
ize the WLANs. The last WLAN hop is a shared wireless
medium and most WiFi clients today support only contention-
based MAC, leaving no means for APs, even OpenFlow-
enabled WiFi APs, to control client-to-AP uplink transmis-
sions. Consider an example of an enterprise wanting to guar-
antee 50% share of airtime for employee devices. If there are
nine guest devices and only one employee device, all with
heavy backlog traffic to send, the employee will get only
about 10% share of air-time. Previous approaches for APs
to control clients’ uplink 802.11 or TCP transmissions were
either intrusive (dropping uplink 802.11 frames or downlink
TCP ACKs), unfair by causing starvation (greedy use of
Self-CTS) or hard to be adopted (requiring changes of 802.11
protocol) [13–15]. Furthermore, most of these techniques
don’t provide a good resource guarantee, since they only
indirectly control uplink transmission probabilities and can-
not prevent aggressive UDP streaming from monopolizing a
link.

In summary, meSDN is motivated by the unique differ-
ence of wireless (vs. wired) and aims to provide funda-
mental software-defined solutions for many problems such
as WLAN virtualization, application-awareness, E2E QoS
and network troubleshooting. To realize them, meSDN re-
quires more than a trivial extension of existing SDN APIs
and we will discuss the proposed architecture in the follow-
ing section.

In this paper, we primarily focus on enterprise settings
where the WLAN infrastructure is managed by a single oper-
ator. Enterprise WLANs today implement Radio Resource
Management (RRM) solutions [16–18] in a central controller
(onsite or in the cloud), which collects channel, interference

and traffic information from the APs and controls chan-
nel, transmit power and user loads across APs, similar to
the centralized solutions studied in the literature [19–21].
meSDN can leverage the centralized RRM solutions to effi-
ciently achieve WLAN virtualization. Enterprise ITs often
deploy device management software on employee devices [9],
making client-side changes for meSDN easier. Later, we will
discuss applying meSDN to non-enterprise settings.

3. meSDN

3.1 Architecture
As shown in Fig. 2, meSDN has three components in mo-

bile clients: (1) Scheduler (e.g., Linux qdisc) (2) flow man-
ager (e.g., Open vSwitch, OVS), and (3) local controller.
There is also a global network controller that talks with
the client local controllers and the APs. We assume SDN-
enabled APs, which optionally provide a few useful details,
e.g., beacon schedule and per-client airtime usage, to the
global controller.

Flow Manager is a software OpenFlow switch, e.g. OVS,
that measures per-flow statistics including our additional
metrics, such as burst duration & rate and inter-burst time,
and feeds them to the local controller for airtime schedul-
ing, for example, in order to minimize the scheduling latency
experienced by realtime applications. OVS also takes per-
flow QoS and access control actions: it ensures correct QoS
markings (IP DSCP/TOS) for end-to-end QoS provisioning
and correct mapping to 802.11 QoS queues, (e.g. ensure that
no P2P traffic gets queued in the Voice queue). In addition,
meSDN extends OVS further to interact with WiFi driver
to configure, for example, its power-save settings and also to
collect ‘per-flow’ wireless statistics such as RSSI and drop
count; this ”Wireless Extension” enables the control plane
to better schedule airtime resource. For example, VoIP flow
suffering hidden-interference will show high drop counts and
we can schedule the flow or client in a different time window
to avoid interference. The ‘per-flow’ stat is useful because
we can prioritize a VoIP flow over a p2p flow when both
suffer high wireless drops.

Scheduler is Linux Qdisc that applies prioritization and
rate-limiting to outgoing flows. OVS implementation to-
day already leverages Qdisc to implement OpenFlow QoS
APIs – prioritization and rate-limiting. To implement air-
time scheduling, which is specific to wireless, meSDN can
extend either Qdisc or WiFi driver. (We will compare the
two options later.) The ”meSDN extension” module, either
in Qdisc or WiFi driver, starts/stops dequeueing of the out-
going flow based on the airtime schedule given by the con-
trol plane. Ideally, the ability to schedule airtime usage of
‘each flow’ is desirable for finer-grained airtime/QoS con-
trol and we can further extend OpenFlow APIs to signal
per-flow schedules down to the ”meSDN extension” mod-
ule. But this would complicate the controller and scheduler
implementations. Though we are open to the possibility of
per-flow airtime scheduling, at this point, we assume airtime
scheduling is done per-device and don’t consider OpenFlow
as a signaling API.

Local controller is userspace software that controls Flow
Manager and Scheduler. The local controller also provides
application-awareness and generates flow-to-application map-
pings by monitoring active network sockets (netstat logs)
and their pid/uid bindings that are available in Android

Flow Manager (e.g., OVS)

Kernel

User Space

Applications

Mobile Device

Local Controller

G
lo

b
a

l
C

o
n

tr
o

ll
e

r

OpenFlow

WiFi Driver

1) per-slice/user/app
policy & QoS profile

2) aggregated resource
demand & QoS
requirement

3) airtime schedule &
real-time action

TCP/IP

rssi,
drop cnt,

…

Wireless ext.

Scheduler
(e.g., Qdisc)

meSDN
ext.

Linux TC

meSDN ext.meSDN API

WLAN
Infra

Figure 2: meSDN Architecture.

and other major operating systems. The local controller
inserts a flow rule corresponding to each socket into OVS.
Because the local controller knows which socket/flow be-
longs to which application, it can easily apply appropriate
application-specific policy, assigned by the global controller
or set directly by the end user [22]. We extend the OpenFlow
APIs to read per-flow wireless stats from the flow manager.
The local controller can use Linux Traffic Control (TC) or
meSDN API to control the meSDN extension depending on
it’s location either in Qdisc or WiFi driver.

Global controller coordinates with the local controller
in three steps (also see Fig. 2). First, the global controller
provides per-slice, per-user, per-application policies and QoS
profiles to the local controllers. For example, an enterprise
IT may allow a certain VoIP application for guest users but
not for employees. The IT admins may have pre-profiled a
QoS spec for certain video applications. Second, given the
policies and QoS profiles, the local controller can “aggre-
gate” currently running applications’ resource (e.g., airtime)
and QoS requirements (e.g., latency tolerance), and send
the aggregated requirements to the global controller sched-
uler (the 2nd step in Fig. 2). This client-side aggregation
reduces control overhead and improves scalability. This also
protects user privacy because the local controller can pro-
vide network requirements to the global controller without
revealing which applications are running on the device. This
is in contrast to current network-based application detection
solutions that employ Deep Packet Inspection (DPI), look-
ing into the user payload.

Finally, the global controller apply proper actions back
to the local controllers (the 3rd step). For example, based
on the received per-client aggregate airtime demands, the
global controller provides the schedules to the local con-
troller, which then program scheduling mechanism through
meSDN extension.

The global controller may also directly manage the de-
vice components (OVS and qdisc) using OpenFlow, and
since OVS supports multiple controllers, it can be managed
by both local and global controllers. Unlike wired SDNs
that typically have an out-of-band control channel between
switches and the controller, we have to use the same wire-
less interface for data and control; and reliable and scalable
in-band control is hard in wireless due to power-saving and

interference. Thus, we argue that the global controller is bet-
ter to communicate only with the local controller, which runs
as a proxy for the device components, in semi-real-time syn-
chronously e.g., once every ‘N’ beacon cycles, and also asyn-
chronously as needed, e.g., to adapt to sudden changes in ap-
plication demands. We leave the control message scheduling
in meSDN as future work.

3.2 meSDN applications
meSDN enables the control-plane of wireless networks to

be extended to mobile devices and allows for top-level de-
cisions to be made from a global network controller with
knowledge of the network as a whole, rather than device-
centric configurations. In addition, meSDN easily obtains
user application information, as well as the ability to mon-
itor and control application flows dynamically. We demon-
strate several use-cases of meSDN as follows.

App-aware E2E QoS is one of key SDN applications.
Existing approaches require user inputs or custom integra-
tion between a SDN controller and each application to de-
tect the start/end of application flows and learn about their
QoS requirements [3, 4, 23]. Deep-Packet Inspection and
machine learning approaches leverage unique per-app sig-
natures and distinguish network flows from different ap-
plications [24]; but they are unable to differentiate vari-
ous types of network flows generated from one application.
For example, Skype generates voice, video, screen sharing,
IM, file transfer, and signaling messages, each with differ-
ent requirements and constraints. Realtime detection of
QoS demanding flows would require constant monitoring
and analysis of network flow patterns (packet sizes, inter-
packet time), which is costly to implement on CPU-limited
APs and switches.

In our prototype system, we could collect per-flow packet
size and timestamp information from Android devices with
marginal overhead by extending OVS and OpenFlow stat
APIs; we could detect Skype video flows and correctly set
their QoS to Video class using OVS/OpenFlow. meSDN can
also notify the global controller of the start of the video flow
and ask to enforce a consistent QoS policy across the entire
E2E flow path. Because the controller has global visibility
beyond that single link, it can detect a bottleneck and do
an admission control of the video flow from the client. E2E
QoS coordination is our future work. Learning per-app/flow
transmission pattern will be discussed in the next section.

Network fault diagnosis and trouble shooting contin-
ues to plague many users today – so, having the ability to
truly inspect flows end-to-end and conduct diagnostic tests
at the endpoints may be one of the killer applications of
meSDN .

As an example, after installing OVS in the version of An-
droid we tested, the test phone failed to connect to an AP.
By analyzing OVS logs and flow table dump with our times-
tamp extension, we could find the last packet went through
the OVS datapath was an 802.1x packet (eth type: 0x888e)
received from the WiFi interface wlan0 and sent to the inter-
nal bridge interface (br0); we could scope down the problem
– br0 failed to forward the 802.1x packet to wpa supplicant
application that is in charge of WiFi authentications. To
automate this process, one can write an fault-diagnosis app
in the meSDN local controller that dumps and analyzes
flow tables, for example when WiFi connection establish-
ment takes more than X seconds.

WLAN virtualization with guaranteed airtime slicing
is the main application of meSDN , which we will detail in
the next section of pTDMA.

3G/4G cellular network radio management policies are
known to badly interact with mobile applications that em-
ploy periodic transfers, wasting radio resources and device
energy [25,26]. The periodic transfers are typically for back-
ground analytics and delay-tolerant, thus can wait to be
sent together with user-triggered data transfers. meSDN
framework and pTDMA airtime scheduler can be used to
detect and delay such periodic transfers without expecting
the source applications to optimize their transmission pat-
terns.

4. pTDMA
As a proof-of-concept of meSDN framework, we design,

prototype and evaluate a WLAN virtualization service, pT-
DMA, while leaving its full design & implementation to fu-
ture work.

4.1 Overview
pTDMA, using TDMA-like ‘coarse-grained’ airtime schedul-

ing on top of 802.11 CSMA/CA MAC, virtualizes airtime
resource between network slices. Note that we do not (and
cannot) guarantee absolute interference-free airtime, which
is impossible in unlicensed bands. pTDMA guarantees a
share of airtime duration for each slice to ’attempt’ medium
access while avoiding contention between different slices and
minimizing contention between clients within a slice; but it
cannot completely avoid interference.

We assume the wireless “channel” resource is under con-
trol by the centralized Radio Resource Management (RRM)
solutions in enterprise WLANs [16–18]. We define the role of
pTDMA to manage airtime share between virtual network
instances (their clients) that collocate in space and channel.
RRM can compute airtime available for each channel and
AP based on the measured contention and interference and
feed the airtime availability to our global pTDMA scheduler.

The key concept of pTDMA is to separate airtime slices
used by different network instances so that traffic for differ-
ent networks do not overlap and wireless contention is con-
fined to traffic internal to one network instance. Fig. 3 illus-
trates a simplified example of the airtime resource shared by
two network instances: employee network and guest network
with 50:50 time share. As a simple baseline, the entire time
slice (max 50%) can be open to all clients of each network
instance. The clients and APs of each network instance will
contend for the medium access based on the 802.11 MAC. If
the operator also wants to manage contention and airtime
usage within each instance, the instance’s airtime slice can
be further divided into multiple time windows and sched-
uled based on each individual clients’ QoS requirements and
traffic pattern provided by the local controllers.

4.2 Scheduling principles
There are myriads of scheduling schemes in the literature

that addressed other important factors like work-conservation,
fairness, and interference [15,27–30]. For example, efficiently
reassigning unused airtime resource to those in need (work-
conservation) is critical. When two clients are known to have
hidden interference, we can avoid scheduling the two in the
same window. We rely on the previous work and future work
for the detailed design of the scheduling algorithm and this

E1
E2 G1

G2

G3

G4

G5

G6

E1
E2

E1
E2

E1
E2

G1
G2

G3
G4

G5
G6

....

0ms 10 20 30 40 50 60

Figure 3: pTDMA scheduling example.

paper discusses high-level principles and constraints specific
to running pTDMA in WLANs. Ultimately, the scheduling
mechanism is up to each network operator who can program
the algorithm in the global controller.

Because the pTDMA qdisc operates above the WiFi driver,
we can’t tightly control per-packet transmission timing to
a microsecond level as conventional TDMA does. Also, the
tight TDMA scheduling can perform worse in the presence of
unexpected interference or burst traffic, which 802.11 CSMA
MAC is supposed to deal with. Thus, pTDMA scheduling
unit is not per-packet basis but is a larger time window dur-
ing which a client can transmit and receive multiple pack-
ets. (As 802.11 MAC aggregation typically use 4ms time
limit, this could be a good minimum limit. We use 10ms in
our prototype.) Because perfectly estimating future traffic
pattern and demand is difficult, we also schedule multiple
clients in a common window to help maximize channel uti-
lization while controlling the number of contending clients.
Finding a good balance between multiplexing gain and con-
tention overhead has been studied in ref. [31] and the pT-
DMA scheduler can leverage the previous study.

pTDMA should carefully determine the interval between
two consecutive time windows of a client to meet currently
active application’s delay and jitter requirement. Consider
an example when video streaming and VoIP applications,
running on the same client, have similar inter-burst intervals
but their bursts are interleaved. pTDMA can delay one flow
to match its burst pattern to the others’ and schedule the
client’s ontime windows to fit the matched pattern; delaying
the streaming flow is more desirable because a streaming
buffer can absorb additional delay while VoIP has a more
stringent delay requirement. Keeping the interval time con-
stant is desirable to control jitter and to provide consistent
TCP performance. In addition to the interval, the window
size (scheduling unit) must be set carefully to meet various
application requirements, while balancing channel utiliza-
tion and contention overhead.

Optimally deciding the window size & interval and schedul-
ing clients over windows is a challenging problem, especially
when there are many network slices and client devices. In
this case, scheduling all clients of each network instance in
a window (the baseline approach) can simplify the prob-
lem and increase the chance to meet the basic requirement
– separate airtime slice for each network instance – while
minimizing the interval time.

4.3 Downlink Control and Power-Saving

For AP-to-client downlink control, we may implement a
similar pTDMA scheduler on APs but its implementation
may be complicated because the AP has to control timings
for every client. As an alternative, we found WMM-Power
Save (WMM-PS) mechanism that triggers AP’s downlink
transmission of buffered data to a client by the client’s up-
link transmission [32]. (This is different from legacy power
saving, in which a client typically waits till the next beacon
to transmit or receive.) WMM-PS is a part of Wi-Fi Certifi-
cation program and implemented in most client devices. We
leverage WMM-PS to indirectly confine downlink transmis-
sions to the time window controlled by the client’s pTDMA
scheduler.

Typically WMM-PS is used for VoIP or video traffic that
has a regular burst pattern. Best effort applications (email,
web and file transfer) are handled by legacy power sav-
ing. When backlogged packets are present for TX or RX,
e.g., from bulk file transfer, most WiFi drivers stay in the
Constant Awake Mode (CAM), as opposed to power sav-
ing mode, even when they do not obtain constant channel
access due to contentions. Because pTDMA controls con-
tention in each window, it allows the WiFi interface to more
efficiently utilize its active time and to sleep longer outside
of the ontime window. Thus, pTDMA makes WMM-PS also
attractive for best effort traffic. In addition, meSDN OVS
can detect two flows with their burst patterns interleaved
and combine their patterns appropriately in the pTDMA
qdisc such that the inter-burst time of the combined flow is
maximized, increasing the sleeping time. In addition, we will
show pTDMA and WMM-PS can improve power-efficiency
without losing throughput performance.

5. PROTOTYPE IMPLEMENTATION
In this section, we describe a scaled-down version of meSDN

framework to prototype the pTDMA service on top.

5.1 Architecture
We implemented a pTDMA scheduler using Linux mul-

tiq [33] qdisc as a basis. pTDMA qdisc represents the meSDN
extension of the meSDN architecture (Fig. 2). Implement-
ing it in the driver could give tighter control over airtime
usage, but due to practical issues of less accessibility we
prototyped in the qdisc.

In Flow Manager, we use OVS to measure the per flow
statistics and also take QoS actions on per-flow per-app. We
also prototyped the OpenFlow-Wireless extension by con-
veying WiFi stats (such as RSSI) in Linux packet buffer
(skbuff) forwarded from the driver to the OpenFlow dat-
apath but didn’t use the stats for pTDMA scheduling in
this implementation. Finally, the Global Controller com-
municates with the local controller to set the schedule for
pTDMA qdisc.

5.2 Challenges
Millisecond level synchronization, instead of microsec-

ond required by conventional per-packet TDMAs, is needed
to enforce pTDMA schedules across clients. Mobile phone
GPS or NTP can provide such accuracy as we observed from
our Android phones.

Driver buffering delay is known to be large enough to
cause application performance to drop under certain condi-
tions (Bufferbloat [34]) because WiFi (and also Ethernet)
drivers typically have a fairly large (100-300 or more) ring

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100

U
D

P
th

ro
ug

hp
ut

(a
vg

,st
d)

 (M
bp

s)

Experiment duration(sec)

No pTDMA(8)
pTDMA - guest(6)

pTDMA - employee(2)

(a) UDP throughput

0.4

0.6

0.8

1

 0 10 20 30 40 50 60

CD
F

Inter-packet time (ms)

with pTDMA
without pTDMA

(b) Guest1 UDP packet interval

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100

TC
P

th
ro

ug
hp

ut
(a

vg
,st

d)
 (M

bp
s)

Experiment duration(sec)

No pTDMA(8)
pTDMA - guest(6)

pTDMA - employee(2)

(c) TCP throughput

Figure 4: Testing with 2 employees and 6 guest devices with 50:50 airtime share.

packet buffer. The time to drain the buffer can take hun-
dreds of milliseconds or more when the buffer is filled with
max MTU sized packets and the wireless throughput is slow.
This can hurt pTDMA because the driver may consume
more airtime than scheduled to drain all the buffered packets
even after pTDMA qdisc stops. As a solution to bufferbloat,
Ethernet drivers started to implement Byte Queue Limits
(BQL), where the limit is dynamically set based on number
of bytes the NIC dequeued recently [35]. In our prototype,
we took a similar BQL approach into the WiFi driver while
providing reasonable buffer space for 802.11 MAC aggrega-
tion.

802.11 beacons: we believe pTDMA scheduling cycle
doesn’t have to be tied to the beacon interval, which can
differ across APs. We don’t control or coordinate beacon
timing, but rather inform the beacon TX schedule to the
pTDMA scheduler, which then leaves some time after each
beacon, for multicast traffic and unicast traffic for legacy
power saving devices.

5.3 Evaluation
We prototyped meSDN client-side components on eight

Google Nexus 4 Android phones. We formed two network
slices – an “employee” network with 2 devices and a “guest”
network with 6 devices – and applied the same pTDMA
schedule of Fig. 3 providing 50:50 airtime share to the two
virtual slices, but with all 8 devices connected to one phys-
ical AP.

In Fig. 4(a), all devices are sending uplink iperf UDP at
12 Mbps, and the pTDMA scheduling is initiated at 50 sec.
The graph plots the average throughput over the devices in
each network slice with the high and low water-mark bars
presenting the standard deviations. The first 20 seconds are
impacted by low wireless speeds from fresh starts and were
excluded in the following analysis. We clearly see the em-
ployee average is almost 3X larger than the guest average,
indicating pTDMA provides the intended airtime share. pT-
DMA also improves fairness with lower temporal variations
compared to non-pTDMA, as pTDMA reduces the number
of simultaneously contending nodes in a window (from 8 to
2 in the employee network slice and from 8 to 6 in the guest
slice). As we have only two employee devices, the“employee”
slice shows higher statistical variation. Guests (6 devices)
have much smaller variation than non-pTDMA (8 devices)
thanks to the reduced contention of pTDMA. The reduced
contention also increased net throughput, by 3 to 10% for
different schedules.

To assess power-saving improvement, we plot inter-packet
transmission intervals of one guest device in Fig. 4(b). pT-
DMA gives longer interval time during which the WiFi in-
terface can sleep. While at this time, we did not directly
measure device power consumption, we compute the total
time the interface would sleep assuming a 5 ms timer for
WMM-PS to detect inactivity and go to the sleep state: it
can sleep 80% of entire run time with pTDMA while only
28% without pTDMA. Fig. 4(c) shows that the increased
transmission intervals in the pTDMA schedule do not ad-
versely impact TCP performance.

We tested different schedules, e.g., only one employee in a
window or three guests in a window, and observed very sim-
ilar results. Some schedules increased aggregate throughput
(by 10%) while deviating from the intended employee:guest
throughput ratio, suggesting a need for future study.

6. RELATED WORK & DISCUSSION
WLAN infra virtualization: Current APs can host

multiple SSID networks or ‘virtual APs’ (e.g., employee vs.
guest) on an AP radio [36] as a basis to control authentica-
tion, security and Ethernet-side bandwidth but they don’t
guarantee wireless resource share to each SSID network.
Throttling Ethernet bandwidth may indirectly control wire-
less airtime usage of uplink TCP traffic, but with limited
granularity; uplink UDP can’t be controlled at all [37]. Re-
cent work of OpenRadio [7], OpenRAN [8], CloudMAC [38]
and Odin [39] extends SDN control to wireless APs. The
Wireless & Mobile Working Group in Open Networking Foun-
dation (ONF) is investigating various use cases for SDN-
enabled APs and planning to standardize SDN control of
wireless APs by extending OpenFlow [40]. SDN-enabled
APs can control wireless resource for downlink traffic. How-
ever none of these work are considering SDN on end devices
or addressing uplink control issue, and therefore they can-
not control uplink traffic. Uncontrolled uplink transmissions
can interfere with other uplink traffic and downlink traffic, so
SDN-enabled APs can not guarantee uplink airtime or even
downlink airtime. By carefully tuning 802.11e QoS param-
eters on the AP, we can probabilistically control downlink
airtime shares and be more immune to uplink traffic, but
this breaks 802.11 QoS mechanism or limits the number of
virtual networks to four (802.11 QoS classes) [41].

Client-side solutions: Implementing per-packet TDMA
MAC in WiFi driver has been demonstrated to virtualize air-
time [14] but its throughput and scalability is challenged by
the lack of sub-millisecond level 1) hardware control from

the driver software and 2) clock synchronization across de-
vices. SplitAP [15] loosely controls uplink airtime by shap-
ing client’s outbound traffic using Click router but it causes
under-utilization of airtime. In contrast, pTDMA achieves
tighter airtime control and also improves aggregate through-
put and power-efficiency. The work in [11] deployed OVS on
Android to efficiently utilize multiple network interfaces on a
multi-homed device. They also introduced a local controller
to manage OVS but the coordination with other devises or
the rest of the SDN framework was not discussed.

Application-awareness: MultiNets [42] and Delphi [23]
have proposed mechanisms to use multiple network interface
of the smartphones based on the policies (i.e. energy saving,
throughput performance, data usage cost, delay sensitivity),
manually given by the user [42] or specified by each appli-
cation [23]. Rather than relaying on users or apps to spec-
ify their objectives, meSDN monitors and analyzes network
flows to learn the app’s network demands real-time. pT-
DMA changes the transmission patterns of applications and
thus may affect Quality of Experience (QoE) of application
users. Recent work [43] shows the possibility of monitor-
ing network flows to estimate the QoE, which meSDN can
leverage to improve pTDMA scheduling.

Interference is another hurdle in achieving RF resource
guarantees in unlicensed bands. pTDMA can control in-
terference within and also between meSDN network slices.
External interferences can be handled by existing work on
interference monitoring and mitigation [19–21]. Enterprise
Radio Resource Management solutions today aim to realize
such centralized schemes by tightly monitoring and reacting
to interference at down to 4 min adaptation cycle [17]; recent
small business and home APs are also controlled by ‘cloud’
for better radio resource management [18]. Even when ex-
ternal interference is unmanaged, pTDMA can still control
the airtime ’share’ among network slices, while each share
will experience the external interference and deal with it
based on 802.11 MAC.

Client WiFi driver modification: Though there have
been many innovative solutions that require “only” driver
changes [14,30,44], none of them have been widely adopted.
We found that end-device manufacturers tend to avoid mak-
ing any custom changes on the drivers shipped by the chipset
vendors because it is hard to maintain the custom changes
throughout the future chipset/driver releases and it restricts
flexibility of end-device manufacturers in selecting radio chipsets
for future device designs. We believe that the WiFi proto-
col and the client WiFi stack are better to be kept intact
to develop and deliver the new meSDN framework reliably
across a multitude of end devices. Hence, our current pro-
totype leveraged Linux standard components – Qdisc and
OVS – as building blocks. Both components exist in recent
Android kernel source.

WiFi community may recognize the need for tighter air-
time control and introduce additional control knobs in the
driver (e.g. millisecond-level control of sleep/awake) or im-
plement existing optional QoS features from the 802.11 stan-
dard. They will surely benefit meSDN , and we look forward
to seeing such new knobs. However, even with those new
knobs in the driver, we believe pTDMA scheduling intelli-
gence is better to reside outside the WiFi driver/stack and
rather in the meSDN global or local controller where infor-
mation about user applications and other devises is avail-
able.

Incremental deployment: We had to root the Android
devices to install OVS and pTDMAqdisc kernel modules.
(On the other hand, changing the WiFi driver required re-
imaging the entire kernel.) To ensure that heterogeneous
end devices can participate in and benefit from meSDN , the
kernel modules need to be natively integrated into the stack
OS by the device manufacturers and similar support from
other operating systems are needed.

To support hybrid deployments and phased migrations,
meSDN and non-meSDN end devices will need to co-exist
in the same WLAN environment especially in non-enterprise
settings where synchronized deployment over all client de-
vices is difficult. To continue to provide air time guarantees
to the meSDN clients, non-meSDN clients can be controlled
via mechanisms proposed earlier, such as dropping 802.11
data frames to lead them to backoff.

7. CONCLUSION
In this paper, we argued that extending SDN capability

to mobile end devices can provide true end-to-end software
defined solutions for many network problems such as QoS,
virtualization, and fault diagnosis. We proposed the meSDN
(mobile extension of SDN) framework and demonstrate its
use-cases: application-aware 802.11e QoS, OpenFlow-based
fault diagnosis and WLAN virtualization. As a proof-of-
concept, we used meSDN framework to implement a WLAN
virtualization service that effectively guarantees airtime shares
to network slices using a Time Division Multiple Access like
airtime scheduling, named pseudo TDMA (pTDMA).

8. REFERENCES
[1] E. Cuervo et al., “MAUI: Making Smartphones Last

Longer with Code Offload,” ACM MobiSys 2011.

[2] B.-G. Chun et al., “CloneCloud: Elastic Execution
Between Mobile Device and Cloud,” ACM EuroSys
2011.

[3] UCI Forum, “UC SDN Use Case – Automating QoS.”
http://tinyurl.com/lch8qy7.

[4] W. Kim et al., “Automated and scalable QoS control
for network convergence,” USENIX INM/WREN,
2010.

[5] “Open vSwitch.” http://openvswitch.org/.

[6] A. Patro, S. Govindan, and S. Banerjee, “Outsourcing
Home AP Management to the Cloud through an Open
API.,” Open Networking Summit, 2013.

[7] “OpenRadio.” http://gigaom.com/2012/04/19/

openradio-changes-what-it-means-to-be-an-isp/.

[8] M. Yang et al., “OpenRAN: A Software-dëıň ↪Aned
RAN Architecture Via Virtualization,” ACM
SigComm Poster, 2013.

[9] J. Dennis Gessner et al., “Towards a User-Friendly
Security-Enhancing BYOD Solution.,” tech. rep., NEC
Europe Ltd., 2013.

[10] “Riverbed Steelhead Mobile.”
http://tinyurl.com/lka49nb.

[11] K.-K. Yap et al., “Making use of all the networks
around us: a case study in android,” ACM CellNet,
2012.

[12] M. Balon and B. Liau, “Mobile virtual network
operator,” in NETWORKS, 2012, 2012.

[13] Y. Yiakoumis et al., “Slicing home networks,” ACN
HomeNets, 2011.

[14] G. Smith et al., “Wireless virtualization on commodity
802.11 hardware,” ACM WinTECH, 2007.

[15] G. D. Bhanage et al., “SplitAP: Leveraging Wireless
Network Virtualization for Flexible Sharing of
WLANs,” in IEEE GLOBECOM, 2010.

[16] “Radio Resource Management under Unified Wireless
Networks.,” tech. rep., Cisco, August 2007.

[17] “Configuring Adaptive Radio Management (ARM)
Profiles and Settings,” tech. rep., 2008.

[18] “Meraki White Paper: Meraki Hosted Architecture.”
http://tinyurl.com/kb4dsyl.

[19] V. Shrivastava et al., “PIE in the sky: online passive
interference estimation for enterprise WLANs,”
USENIX NSDI, 2011.

[20] S. Rayanchu, A. Patro, and S. Banerjee, “Catching
whales and minnows using WiFiNet: deconstructing
non-WiFi interference using WiFi hardware,” USENIX
NSDI, 2012.

[21] E. Rozner et al., “Traffic-aware channel assignment in
wireless LANs,” IEEE ICNP, 2007.

[22] Y. Yiakoumis et al., “Putting home users in charge of
their network,” ACM UbiComp, 2012.

[23] S. Deng, A. Sivaraman, and H. Balakrishnan, “All
Your Network Are Belong to Us: A Transport
Framework for Mobile Network Selection,” in ACM
HotMobile, 2014.

[24] Z. Qazi et al., “Application-Awareness in SDN,” ACM
SigComm Demo, 2013.

[25] F. Qian et al., “Periodic Transfers in Mobile
Applications: Network-wide Origin, Impact, and
Optimization,” in ACM WWW, 2012.

[26] J. Huang et al., “A Close Examination of Performance
and Power Characteristics of 4G LTE Networks,” in
ACM MobiSys, 2012.

[27] I. Rhee et al., “DRAND: distributed randomized
TDMA scheduling for wireless ad-hoc networks,” ACM
MobiHoc, 2006.

[28] S. Borst, “User-level performance of channel-aware
scheduling algorithms in wireless data networks,”
IEEE/ACM Trans. Netw., vol. 13, no. 3.

[29] H. Kim and Y. Han, “A Proportional Fair Scheduling
for Multicarrier Transmission Systems,” IEEE
Communications Letters, vol. 9, no. 3, 2005.

[30] V. Shrivastava et al., “CENTAUR: realizing the full
potential of centralized wlans through a hybrid data
path,” ACM MobiCom, 2009.

[31] I. Rhee, A. Warrier, M. Aia, and J. Min, “Z-MAC: a
hybrid MAC for wireless sensor networks,” ACM
SenSys, 2005.

[32] “WMMTM Power Save for Mobile and Portable
Wi-Fi R©CERTIFIED Devices.,” tech. rep., Wi-Fi
Alliance, 2005.

[33] “HOWTO for multiqueue network device support.”
http://www.mjmwired.net/kernel/Documentation/

networking/multiqueue.txt.

[34] J. Gettys and K. Nichols, “Bufferbloat: Dark Buffers
in the Internet,” ACM Queue, vol. 9, no. 11, 2011.

[35] “Network transmit queue limits.”
https://lwn.net/Articles/454390/.

[36] K.-K. Yap et al., “Separating authentication, access
and accounting: A case study with OpenWiFi,” tech.
rep., OpenFlow TR 2011-1.

[37] K. Cai et al., “A Wired Router Can Eliminate 802.11
Unfairness, But It’s Hard,” ACM HotMobile, 2008.

[38] J. Vestin et al., “CloudMAC: torwards software
defined WLANs,” ACM MobiCom, 2012.

[39] L. Suresh et al., “Towards programmable enterprise
WLANS with Odin,” ACM HotSDN, 2012.

[40] Open Networking Foundation (ONF), “Wireless &
Mobile Working Group.”
http://tinyurl.com/ltud7s2.

[41] N. Kiyohide, S. Yozo, and N. Nozom, “Airtime-based
Resource Controls in Wireless LANs for Wireless
Network Virtualization,” IEEE ICUFN, 2012.

[42] S. Nirjon et al., “MultiNets: Policy Oriented
Real-Time Switching of Wireless Interfaces on Mobile
Devices.,” IEEE RTAS, 2012.

[43] V. Aggarwal et al., “Prometheus: Toward
Quality-of-Experience Estimation for Mobile Apps
from Passive Network Measurements,” ACM
HotMobile, 2014.

[44] “Cisco Compatible Extensions Program for Wi-Fi
Tags Guidelines.,” tech. rep., Cisco, 2007.

