Vision: Towards an Extensible App Ecosystem for Home
Automation through Cloud-Offload

Yuichi lgarashi
Hitachi Yokohama Research Laboratory

yuichi.igarashi.hb@hitachi.com

ABSTRACT

Home security and automation—temperature, lighting and
energy management, access control, and alarming—is an
area of growth in residential and office settings. These sys-
tems typically include a number of sensors and actuators
connected to a controller that runs the automation soft-
ware. For cost reasons, these home controllers are often
resource constrained devices that are not easy to upgrade
or replace at scale. But with the emergence of more ca-
pable sensors, there is a need for applications that require
significant amounts of computing resources, e.g., video feeds
from cameras being used to identify people and their activ-
ities. The limited resources at the home controller makes it
hard to deploy such applications, especially when numerous
ones are being used concurrently. This problem is reminis-
cent of applications on mobile phones that necessitate cloud
off-load. However, we posit that home control applications
pose a new set of requirements unique to this domain. In
this paper, we motivate a few such requirements including
the need for disconnected operation and an offload decision
engine with system-wide visibility, and propose an architec-
ture to address them.

Categories and Subject Descriptors

D.4.7 [Software]: Organization and Design—Distributed
Systems

General Terms
Design,Experiment,Reliability

Keywords
Programable, Cloud, Off-loading, Home Automation

1. INTRODUCTION

The emergence of a mobile app ecosystem built on touch-
enabled smartphones has transformed the way billions of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

MCS’14, June 16, 2014, Bretton Woods, New Hampshire, USA.

Copyright 2014 ACM 978-1-4503-2824-1/14/06 ...$15.00.
http://dx.doi.org/10.1145/2609908.2609949.

Kaustubh Joshi, Matti Hiltunen, and
Richard Schlichting
. AT&T Shannon Labs
{krj,hiltunen,rick}@research.att.com

people interact with the digital world. Can a similar ecosys-
tem of home and building automation applications trans-
form the way we live in the physical world? And is there
a device analogous to the smartphone, flexible yet unifying,
around which such an ecosystem could be anchored? While
home automation and smart spaces have had a long history
with enthusiasts and in the academic literature since the late
90s [3, 10, 15, 9], it is only recently that the area has seen
commercial offerings at scale, mainly from telecom providers
and cable operators, e.g., [2]. The “device” such systems pro-
vide — the home controller — is a small physical box that
is meant to be the central hub for home automation. It
provides the platform that various sensors and actuators in
the home connect to, and on which home automation ap-
plications run. On such a platform, it is easy to imagine
a rich array of sensors, actuators, and applications, ranging
from home security and energy management to assistance
for aging in place.

However, as a unifying device around which a flexible
ecosystem could be built, we postulate that the home con-
troller’s potential is yet to be unleashed. A critical aspect
is the flexibility of the home controller itself. Unlike mo-
bile phones, which are intensely personal devices that users
are incentivized to upgrade frequently, home controllers are
more intimately connected to homes rather than people.
Once installed, they are difficult and expensive to upgrade
at scale, often requiring on-site technical support. There-
fore, service providers are left with a difficult choice - how
to balance the computing power of a controller (and thus
its cost) with the wide array of current and future uses that
may be vastly different for different homes?

To be sure, requirements for various uses in the home are
vastly different. A simple passcode based door lock applica-
tion requires very few resources to manage, while the same
door lock application, but equipped with a front-door cam-
era and face recognition system requires significantly more
(we provide some numbers in §4). Provisioning all home
controllers for the latter use case makes the service more ex-
pensive for everyone, while provisioning for the former locks
out the more advanced applications.

The problem becomes worse when all combinations of ap-
plications that the controller might be called on to support
at a time are considered. It is little wonder that in to-
day’s home automation marketplace, service providers have
to make decisions on what services can or cannot be sup-
ported apriori, based on worst case scenarios. The result
is less opportunity for everyone — service providers who
have to pick winners and losers with little apriori informa-

tion about which applications will be popular, users that are
limited to service provider choices, and third party develop-
ers who are locked out altogether.

We contend that this area is ripe for “cloudification”. We
propose making the home controller a truly flexible platform
device by allowing its application hosting capabilities to be
extended by cloud resources. Thus, applications might run
either on the controller box when they can and partially or
fully migrating to a cloud VM as and when needed. This
would allow service providers to provision home controllers
without fear that they would be unable to cope with new
applications as they emerge.

The first contribution of this paper is to propose exactly
such a programmable cloud-enabled home controller archi-
tecture. While at first glance it might appear that systems
proposed in the vast literature on mobile offloading might
work in the home automation space, our second contribution
in §2 is to demonstrate that there are crucial differences be-
tween the two in terms of the user interaction model, the
timesharing model, and in reliability requirements. The fi-
nal contribution of this paper in §3 is to identify the mech-
anisms that will be needed to address the challenges and
opportunities resulting from these differences. Finally, we
conclude and discuss future work in §5.

2. CLOUD OFFLOADING FOR THE HOME

Motivating use-case: Home automation, such as home en-
ergy management and home monitoring, are gaining increas-
ing interest both in terms of actual deployments in homes
and standardization organizations [13][8]. The suite of re-
mote controllable network devices for the home, e.g., tem-
perature sensors, remote switches, door locks, lights, and
cameras, is expanding rapidly. Home controllers typically
communicate with these devices through a USB interface,
e.g., a Z-Wave USB dongle, a ZigBee USB dongle, and a
USB camera. There has also been work on designing op-
erating systems specifically for home automation, such as
the HomeOS [7]. HomeOS handles network devices as pe-
ripherals with abstract interfaces, simplifies the development
of applications by providing higher-level abstractions, and
gives users a management interface designed for the home
environment. The aim of these technologies is to extend the
home easily by adding new devices and applications.

With the increased range of possible home devices and
applications that these devices enable (e.g., recognition of
residents based on camera image and automatic unlocking of
doors), the home automation system has to manage multiple
applications at the same time, for example, energy manage-
ment, monitoring inside and outside of the home (motion
sensors, cameras), and automatic locking and unlocking of
doors. Therefore, the home controller hardware quickly be-
comes a bottleneck for deploying a richer home automation
experience and the option of deploying home automation
applications in the “cloud” becomes an appealing option.

Figure 1 illustrates the components and their interactions
in a cloud-enhanced home automation system where the
standalone home controller has been replaced with a hy-
brid home controller consisting of home and cloud elements
[13]. The home devices (sensors and actuators) and home el-
ement reside at the home while the cloud element is located
at some Internet data center.

Home \L J/ J/Cloud
Home Cloud

Element
Network

Y L |

Home Controller

Home Devices(sensors and actuators)

Figure 1: Cloud-enhanced home automation system.

Cloud offloading for mobile devices: The idea of of-
floading computation to the cloud has been utilized in the
context of mobile computing. Mobile applications such as
gaming, video, navigation, and speech recognition requires
significant amount of computing resources and a number of
research projects, e.g., MAUI[5] and CloneCloud[4], have
explored the idea of cloud offloading. MAUI provides dy-
namic energy-aware offloading of mobile code to the cloud.
MAUT decides which methods should be remotely executed
in the cloud based on expected energy consumption of local
processing versus remote execution (including data trans-
fer). CloneCloud dynamically offloads part of the Android
Dalvik from the mobile device to the cloud and uses this
cloned VM image as a powerful virtual device. The main
purpose of CloneCloud is to speed-up execution time and
decrease energy consumption on the mobile device.

What is needed for home automation?: As indicated
above, many emerging home applications can easily over-
whelm the resources available on a home element. For exam-
ple, our preliminary experiments (see Section 4) show that
an application that uses a web camera to monitor a home or
its surroundings can consume 20-40% of CPU resources of
a home element. Therefore, the motivations to offload com-
putation to the cloud are similar to mobile applications and
existing cloud offloading techniques used in mobile comput-
ing become appealing. However, our domain of home au-
tomation has many unique characteristics that differ from
the mobile computing scenario. In this paper, we focus on
these differences between mobile applications scenarios and
our home automation use case. First, home automation ap-
plications are in a sense easier to offload since they are not as
interactive as the mobile applications typically used to mo-
tivate code offloading. Home applications normally gather
information periodically from sensors, actuators, and cam-
eras and analyze and react to the data automatically, and
thus, require less human interaction than gaming on mobile
phone. Therefore, it is often possible to execute the whole
application in the cloud versus the home element. This is
also a major difference to code offloading in mobile comput-
ing since in the mobile computing use cases, the control of
the application remains on the mobile device and the cloud
is simply used as an extra computational resource. Sec-
ond, many home automation applications are safety critical
(e.g., smoke alarms, burglar alarms, automatic door locks)
and must continue to provide their service (potentially in
a degraded mode) even if the network connectivity to the
cloud server is lost accidentally or intentionally (e.g., bur-
glars cutting the network cable at the home or launching

Home devices Home Element Cloud Element

m Data :
oD
Data
D‘__G“ [Synchronization) _]
Data

’:} Data

— - L Synchronization| _ J

:

Transfer

G :applet D:app

Figure 2: Application deployment in cloud-offloaded
home controller for extensible home automation.

a DoS attack against the cloud server). Thus, moving the
application completely to the cloud causes severe problems
when the network connectivity is lost. Specifically, the ap-
plication has to be able to resume execution at the home
element in the case of network disconnection without losing
its state, that is, it must not forget if the doors are un-
locked, irrigation system is on, or if people are at the home
at the time of the network disconnection. Therefore, simply
restarting the applications on the home element may not be
acceptable. Finally, a home automation system often runs
multiple applications for different home functions and multi-
ple users at the same time and therefore the runtime system
has to determine which applications should run on the home
element and which ones on the cloud element. The mobile
code offloading solutions are not designed for multiple ap-
plications, potentially belonging to multiple users, running
continuously without losing application state even in the
case of network or cloud outages.

3. ARCHITECTURE

In this section, we provide an overview of our Programmable
Cloud-Enabled Home Coniroller (PCEHC) architecture. Let
us consider first the alternatives. If all home automation ap-
plications run on the home element, we can call the system a
Local Home Controller system. This is the architecture used
by most existing home automation systems. This solution is
typically cost efficient when there are not many resource in-
tensive home automation applications but runs into resource
constraints when the set of applications and their complexity
grows. An alternative would be to deploy the home automa-
tion applications in the cloud on a cloud element —we call
this the Cloud Home Controller system—and all events and
data from home devices are simply transferred to the cloud
via the home element. In this case, the home element simply
acts as a router and the processing load at the home element
is low. However, a fully cloud-based home controller will be
disabled when there is a network or cloud outage and may
also not be cost efficient for all usage scenarios. Therefore,
we propose a hybrid architecture, the Programmable Cloud-
Enabled Home Controller where the home automation appli-
cations are executed both on the home and cloud elements.

By

Synchronization

Data Transfer

D App |

G Applet

Synchronization [<- = I3

Failure Detection Data Transfer

System wide Scheduler Failure Detection |

oS os |

Cloud Element

Home Element

Figure 3: Functionality overview of cloud-offloaded
home controller for extensible home automation

Application decomposition: Simply providing the choice
of execution locations (home vs. cloud element) is not suf-
ficient to solve the problems for our domain. Specifically,
some applications are too large to run on the home element
but they must operate on the home element to provide ser-
vices when the network connectivity is down. Therefore, to
satisfy all the combined requirements, we propose an ap-
plication design paradigm where each home automation ap-
plication is designed as a combination of two components,
an applet and an app. The applet is a small, often grace-
fully degraded, version of the application and it is small
enough to run on the home element. The app is the fully
featured implementation of the application and needs to be
able to run on the cloud element in case the home element
does not have enough resources available for this applica-
tion. For example, while a home security application may
use video processing to recognize residents and automati-
cally lock and unlock doors, the applet for the application
may require users to authenticate using a key pad. The
applet and app may be deployed together at the home el-
ement, together at the cloud element, or separately where
the applet run on the home element and the app runs on the
cloud element as illustrated in Figure 2. The applet and app
may operate concurrently with each processing some subset
of the events independently, they may operate in a pipeline
where the applet provides preprocessing of data, or as alter-
natives, that is, the applet is only activated when the app is
not available due to network outage.

A number of system capabilities are required to support
this programming paradigm and to manage the resulting
system. The main functions are illustrated in Figure 3.
Specifically, we propose a home automation system with
functions of System-Wide Scheduler, Synchronization, Fail-
ure Detection, and Data Transfer.

System-Wide Scheduler (SWS): The SWS allocates home
automation applications over the distributed platform con-
sisting of the home and cloud elements. For each home
control application, it determines where its applet and app
should be located given the currently available resources at
the home element, available network bandwidth and latency
to the cloud element, (expected) required resources by the
new application, and requirements of the application. For
example, any home control application that requires opera-
tion during network outage requires that the applet always
run on the home element. Also, several home control appli-
cations may operate on the same event streams (e.g., video
feed) and if the feed is already transmitted to the cloud

element, the deployment of an app that relies on the feed
will not introduce any additional strain on the network link
between the elements. The deployment of a new home con-
trol application may require the previously allocated appli-
cations to be reallocated. Finally, the introduction of new
devices in the home may change the application allocation.
We are working on formulating this multi-resource, multi-
application scheduling problem and will develop efficient so-
lutions.

Synchronization: For many home automation applica-
tions, it is important to provide synchronized state between
the app and applet. For example, an app of an application
may use video processing for face recognition and the ap-
plication state then consists of the identities of the people
currently at home. If the network connectivity is lost, the
applet of this application must now take over running (a po-
tentially degraded mode) of the application functionality. If
the applet does not know the application state (i.e., who are
the people at the home now), it may not be able to take the
correct actions (e.g., locking or unlocking doors or activat-
ing motion sensors, etc). Therefore, we envision our system
providing a synchronized shared state abstraction that al-
lows an application state update from app to be propagated
synchronously to the applet, or the other way around. This
capability makes it possible for an applet to take over in the
case of network outage and the app to resume control after
network is restored. We are working on designing a conve-
nient and efficient synchronized shared state abstraction for
the home automation domain.

Failure Detection: For the fail-over capability, it is crucial
that the home controller platform monitors for connectivity
between the home and cloud elements. When the connec-
tivity is lost, it notifies the applications that are registered
for the failure event. The application may either activate an
applet that has been waiting in an inactive state or notify a
running applet that it needs to switch to an active control
mode. Applications are similarly notified when a network
connectivity is restored. The Failure Detection functional-
ity ensures the application notifications at the home and
cloud elements are synchronized with regard to event pro-
cessing so that no application state inconsistency can occur
due to both applet and app assuming they are in charge of
processing and acting on a specific event.

Data Transfer: The Data Transfer functionality provides
general data transfer capabilities such as buffering during
connection failures and general purpose data compression
facilities. Any application specific data compression or fil-
tering would typically be implemented in an applet.

4. PRELIMINARY EXPERIMENTAL
RESULTS

We have performed a number of preliminary experiments
to demonstrate the feasibility and need for the cloud-offloaded
home controller. The experiments were performed on the
following hardware. As the home element, we used a Rasp-
berry Pi with a 700MHz ARM core and 512MB of RAM
running 3.6.11+ kernel Raspbian OS and a Z-wave daugh-
ter board connected to the Raspberry Pi via a serial port
as shown in Figure. 4. Our cloud element is a PC with a
3.10GHz Intel dual core system and 4GB of RAM, running
Ubuntu 12.04.

Web
Z-way
K I 1
Z-wzlwe I Z-wave Raspbian 0OS
device board (ARM 1176)
Remote Switch
/dev/ttyAMAO

Home controller (Raspberry Pl)

Figure 4: Local home controller.

Virtual Home

1
. |
! Controller :
H |
: Web :
1
1
evice H -

Remote Switch 1 || Raspbian 05 | |
Virtual : I
tty LAN 1 QEMU '
<> Le— s

Ubuntu 12.04

Home Controller Server
(Raspberry PI)

Figure 5: Cloud home controller.

First, we evaluated the feasibility of the Cloud Home Con-
troller architecture. We tested offloading GPIO (General
Purpose I/O) procedures using Socat[6] and USB/IP[11].USB
/IP provides a virtual peripheral bus extension over IP Net-
work to tunnel home device USB events from the home el-
ement to the cloud element. We used Socat to establish a
bidirectional byte stream between the home and cloud ele-
ments and encapsulate all ioctl commands for the Z-Wave
daughter board using these Socat streams. We evaluated
the response time of remotely controlling a Z-Wave device
from the cloud element in multiple emulated network set-
tings shown in Table 1. We chose bandwidth and latency
based on published measurements[1, 12, 14]. As shown in
Table 1, the Z-Way application that manages Z-Wave de-
vices and provides sensor data to any web server via Web
API can operate on the cloud element in normal mobile net-
works and home networks.

Second, we tried to offload the capturing and viewing of
live streaming video from a web camera connected to the
home element. In this experiment, we used USB/IP to tun-
nel from the cloud element to the USB devices. The network
in this experiment was a 100Mbps LAN. The experiment
showed that the server can remotely control light weight de-
vices such as a mouse and a keyboard, but can not capture
the video stream on a server due to frame loss. The applica-
tion for streaming video requires advanced timing control to
capture whole video frames. In this case, we need a better
transfer mechanism than USB/IP.

Finally, we used a Local Home Controller to measure the
CPU Load of the Z-Way application and video viewing ap-
plications. The Z-way application consumed on the average
about 15% of CPU resources and 2% of memory. The video
viewing applications, like guvcview and freekinect, required
on the average about 20% of CPU resources and 6% of mem-
ory for 320%x240 resolution at 20 frame/s rate, and on the
average about 40% of CPU resources (up to about 50%) and
7% of memory for 800x600 resolution at 20 frame/s rate.
Also, the experiment showed a resource constrained device
like our home element could not support two web cameras
at the same time.

Table 1: Evaluation of network environments
Home controller | Network | Bandwidth or | Evaluation | Response time[ms
Type Type RTT Environment | turn on || turn off
local (Fig.4) - — real 227 214
LAN 100Mbps real 460 447
3G 80ms + 30% emulated 1,063 1,094
virtual (Fig.5) | 4G/LTE | 65ms + 50% emulated 1,004 1,040
Cable 14.4/7.2Mbps emulated 1,989 1,807
Implications: Even these very preliminary experiments [3] M. Chan, C. Hariton, P. Ringeard, and E. Campo.

show both the need for, and potential of, our cloud-offloaded
home controller architecture. Our experiments showed clearly
that it is easy to overwhelm a low-powered home element de-
vice such as our Raspberry Pi (which is comparable to some
real home gateway processors) with multiple video process-
ing applications (e.g., feed from 2 or 3 cameras). We also
showed that the delay caused by offloading application logic
to a cloud does not necessarily introduce unreasonable la-
tency given typical network connectivity to homes including
3G or LTE networks. Even for applications such as auto-
matic unlocking of doors, a one second delay is reasonable.
However, we also determined that it is not possible simply
to tunnel video to the cloud element. Rather, application
decomposition into apps and applets and platform services
such as data transfer are needed to enable applications to
run on this hybrid platform.

5. CONCLUSION AND FUTURE WORK

In this paper, we make the case that cloud-offloading can
be instrumental in enabling a new flexible ecosystem of rich
applications in the rapidly growing home and building au-
tomation space. Although the problem of cloud-offload has
received a great deal of attention in the literature, most
of this work has been in the context of offloading computa-
tion from mobile phones and tablets. We have demonstrated
through examples and preliminary experimental results that
home automation presents the following characteristics not
typically found in mobile offload settings: a) a more relaxed
user interaction model that can tolerate large network la-
tencies, b) a different timesharing model consisting of mul-
tiple (potentially compute intensive) applications that need
to be continuously operational, and c) a critical need for
disconnected operation. We proposed an architecture for
a cloud-enabled home controller that addresses these dif-
ferences through a combination of application-level decom-
position, system-wide offload decisions, and shared objects
between the home and the cloud that support state syn-
chronization and reintegration. In future work, we intend to
address the remaining challenges in realizing our vision, in-
cluding new offload decision making algorithms and efficient
support for state synchronization.

6. REFERENCES

[1] Y. Abe, R.Geambasu, K.Joshi, H. A.Lagar-Cavilla,
and M.Satyanarayanan. vtube: efficient streaming of
virtual appliances over last-mile networks. In
Proceedings of the 4th annual Symposium on Cloud
Computing, 2013.

2] AT&T. ATET Digital Life.
https://my-digitallife.att.com/learn/.

[4]

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

Smart house automation system for the elderly and
the disabled. In Systems, Man and Cybernetics, 1995.
Intelligent Systems for the 21st Century., IEEE
International Conference on, volume 2, pages
1586—1589 vol.2, Oct 1995.

B.-G. Chun, S. Thm, P. Maniatis, M. Naik, and

A. Patti. Clonecloud: Elastic execution between
mobile device and cloud. FuroSys, 2011.

E. Cuervo, A. Balasubramanian, A. Wolman,

S. Saroiu, R. Chandra, and P. Bahl. Maui: making
smartphones last longer with code offload. In
Proceedings of the 8th international conference on
Mobile Systems, applications, and services, pages
49-62, 2010.

dest unreach.org. socat - Multipurpose relay.
http://www.dest-unreach.org/socat/doc/README.
C. Dixon, R. Mahajan, S.Agarwal, J. A.Brush, B.Lee,
S.Saroiu, and P.Bahl. An operating system for the
home. In Proceedings of the 9th USENIX conference
on Networked Systems Design and Implementation,
2012.

ETSI. Machine to Machine Communications.
http://www.etsi.org/technologies-
clusters/technologies/m2m.

G. Evans. Solving home automation problems using
artificial intelligence techniques. IEEE Trans. on
Consum. Electron., 37(3):395-400, Aug. 1991.

J. Gerhart. Home Automation and Wiring.
McGraw-Hill Professional, 1999.

T. Hirofuchi, E. Kawai, K. Fujikawa, and H. Sunahara.
Usb/ip — a peripheral bus extension for device sharing
over ip network. Proceedings of USENIX Annual
Technical Conference, FREENIX Track:47-60, 2005.
J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and
O. Spatscheck. A close examination of perfor- mance
and power characteristics of 4g lte net- works. In
Proceedings of the 10th international conference on
Mobile systems, applications, and services, MobiSys’
12, pages 225238, 2012.

oneM2M. oneM2M Use Cases Collection.
http://www.onem2m.org/library /index.cfm, 2013.
PCMag. Fastest mobile networks 2013.
http://www.pcmag.com/article2/0,2817,2420333,00.asp,
2013.

A. Ranganathan and R. H. Campbell. Supporting
tasks in a programmable smart home. IIn ICOST
2005 : 3rd International Conference On Smart Homes
and Health Telematic — From Smart Homes to Smart
Care, 2005.

