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ABSTRACT

Large scale deployment of sensors is essential to practical appli-
cations in cyber physical systems. For instance, instrumenting a
commercial building for ‘smart energy’ management requires de-
ployment and operation of thousands of measurement and metering
sensors and actuators that direct operation of the HVAC system.
Each of these sensors need to be named consistently and constantly
calibrated. Doing this process manually is not only time consuming
but also error prone given the scale, heterogeneity and complexity
of buildings as well as lack of uniform naming schemas. To address
this challenge, we propose Zodiac— a framework for automatically
classifying, naming and managing sensors based on active learning
from sensor metadata. In contrast to prior work, Zodiac requires
minimal user input in terms of labelling examples while being more
accurate. To evaluate Zodiac, we deploy it across four real build-
ings on our campus and label the ground truth metadata for all the
sensors in these buildings manually. Using a combination of hierar-
chical clustering and random forest classifiers we show that Zodiac
can successfully classify sensors with an average accuracy of 98%
with 28% fewer training examples when compared to a regular ex-
pression based method.

Categories and Subject Descriptors

C.3 [[Special-Purpose and Application-Based Systems]: Process
control systems; D.4.7 [Organization and Design]: Real-time sys-
tems and embedded systems

General Terms

Standardization, Management, Algorithms

Keywords

Smart buildings, sensor metadata, ontology, active learning

1. INTRODUCTION

Improvements in the design and manufacture of devices have led
to the widespread availability of cheap sensors, actuators and data
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collection infrastructure. This, in turn, has led to increasing in-
terest in “Smart Environments”, which use these technologies to
better understand user context and adapt to meet their requirements
by controlling the physical environment around them. In pursuit of
this vision, researchers have sought to create smart buildings that
are responsive to occupants’ needs and comfort while conserving
energy and water resources. Buildings account for 40% of the pri-
mary energy use of the US [17], emphasizing the value of saving
energy resources in smart buildings.

Within commercial buildings, tasks involving indoor climate con-
trol and maintaining proper ventilation are typically performed us-
ing centralized Building Management Systems (BMS), such as Meta-
sys from Johnson Controls [14]. A BMS interfaces with a large
number of sensors and actuators deployed within buildings during
construction and commissioning such as thermostats, Variable Air
Volume Boxes (VAVs), Air Handler Units (AHUs), Variable Fre-
quency Drives (VFDs) and chillers. Collectively the sensors, actu-
ators and the BMS form an integral part of the Heating, Ventilation
and the Air-Condition (HVAC) system. HVAC accounts for 48-
55% of the energy consumed within buildings [35]. HVAC systems
are relatively complex, typically interfacing with thousands of sen-
sors and actuators, even in a moderately sized building (150,000
sq-ft). BMSs collect data from these sensors and provide verti-
cally integrated tools to not only control the day to day operation
of buildings, but also store and visualize data, analyze trends, and
even detect faults [2, 14].

Vendors such as Johnson Controls, Siemens and Automated Logic
provide proprietary tools to manage the complexity and provide
different functions within buildings. These are often tied to expen-
sive maintenance contracts and have not kept up with the state of
the art in functionality, user interfaces and design. For instance,
despite having fault management as a key function, facilities man-
agers struggle to keep HVAC systems running efficiently and many
faults remain unaddressed [32, 44]. Our own building managers re-
port being notified of over 10,000 faults a day - most of which are
ignored - thereby causing occupant discomfort, equipment deterio-
ration and energy wastage [44]. This sensor management problem
is compounded by lack of interoperability of methods to identify
and manage sensors, and a general lack of tools to analyze large
amount of sensor data generated [32, 27]. As an example, NIST
estimates an annual loss of $15.8 billion in the US due to lack of
building interoperability standards [18].

Recognizing this need for systems that enable ‘smarter’ build-
ings, several recent efforts have attempted to address the problems
of interoperability, information integration, data storage and ac-
cess control. These efforts primarily propose middleware services
for buildings that gather information from disparate sources of in-
formation, including a multitude of sensor protocols, and make it



available to application developers through standardized APIs [2,
5, 6, 16]. Based on our work with building infrastructure, we see
that a key missing piece in all these efforts, however, is related
to the assumption that the underlying sensor information is named
consistently and accurately. Given the long lifetime of buildings
relative to individual sensors or their networks, it is common to see
sensor data information fall into disuse over time. This is exacer-
bated by the current practice of manually mapping sensor informa-
tion for each building to a particular data model by the developers
and building managers [44]. This manual mapping is expensive
(requiring domain experts), time consuming, and does not general-
ize since it needs to be repeated for every vendor, equipment and
building. The lack of standardized and automated naming has be-
come an impediment to the creation and adoption of smart-building
applications by developers that are portable across buildings and
deployments.

The problem of automatically naming sensor metadata correctly
and mapping the sensors and actuators to a uniform ontology is not
easy. The challenges include the scale (thousands of endpoints in a
moderately sized building), diverse lifetimes of buildings and BM-
Ses - that are easily over 50 years in academic campuses - leading to
heterogeneity in equipment types, and varying usage requirements.
Researchers have identified this problem [8, 10, 39], and proposed
solutions that still require significant manual effort. At the same
time approaches based on using regular expressions (regex) and
training examples [8, 37], do not generalize due to varying incon-
sistencies in sensor naming and do not leverage complementary
sensor information such as its metadata and time series sensor data.

To address these challenges, we present Zodiac, a framework
to analyze large numbers of sensors and actuators - including the
time-series based data and the sensor metadata — and map them to
a standard naming scheme with minimal human supervision. To
show the efficacy of Zodiac, we applied it to four buildings on the
UCSD campus comprising of over 20,000 end-points in total. To
evaluate the accuracy of Zodiac we manually labeled the ground
truth in terms of the sensor metadata for these sensors. We show
that Zodiac classified sensor types in these buildings with an aver-
age accuracy of 98% accuracy using 28% fewer training examples,
when compared to a regex based look up method, and only 15%
more manual inputs than a hypothetical oracle algorithm.

The key contributions of our work are as follows.

e We show that the manual effort required to label sensors is
significantly reduced through hierarchical clustering meth-
ods, without requiring customized regex that need building
specific domain knowledge.

e We propose an active learning based approach that is effec-
tive in automatically identifying new sensor actuator types.
Manual input is automatically requested to label these exam-
ples, and this labeling is expanded to improve coverage.

e We show that Zodiac is able to classify sensor types with
high accuracy with only a small number of additional train-
ing examples than an oracle system with perfect knowledge.
As compared to using regex, Zodiac uses significantly less
examples and provides high sensor type classification accu-
racy, without requiring the significant manual effort of writ-
ing complex regexes.

We plan to release the sensor metadata to encourage researchers
to develop systems that can automatically learn sensor relation-
ships, pending permission from the university since some of the
sensor data and metadata could be potentially privacy invasive.
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Figure 1: Figure shows the architecture of HVAC System points
and the BACnet network layout leveraged for data collection

2. BACKGROUND

Modern HVAC systems consist of thousands of sensors and actu-
ators that report information to a building control system for mon-
itoring and maintenance. For example, a room thermostat informs
the control system on how much cooling or heating is required,
and helps an operator determine when the room is too hot or cold.
In addition, there are configuration parameters that determine the
operating point of the equipment such as cooling and heating tem-
perature setpoints for each room. In our buildings, these serve as
the higher and lower temperature bounds that the HVAC system
tries to adhere to. Configuration parameters also include actuation
commands such as switching ON a fan, or scheduling of equipment
operation. We refer to the sensors and the associated configuration
parameters in the HVAC system as points.

Points report data to their respective equipment controllers, which
are embedded devices that operate the equipment control system,
and react to changes in configuration parameters. Each of these
controllers communicate with middle box servers, called Network
Application Engines (NAEs) in Johnson Controls systems, that col-
lect data from the controllers, and act as the interface between the
HVAC system and BMS software. A subset of the NAEs in our
university are connected to a dedicated network (VLAN), and they
expose the points available via the BACnet protocol [9]. We have
deployed our own BuildingDepot server [5] on this network to col-
lect sensor data from 180,000 points across 55 buildings on the
UCSD campus as of July 2015. (Figure 1). For this paper we focus
on a subset of these buildings (four) which are of different sizes
and usage modalities. In particular, for these four buildings, com-
prising of over 20,000 points, we had to manually label the ground
truth for the sensor metadata, including their rype. We use this la-
beled ground truth for both learning and testing of our automated
labeling framework. The ground truth point types were based on
a standardized naming template specified by UCSD contracts and
our prior experience working with HVAC systems and consulta-
tion with the campus building managers. led ground truth for both
learning and testing of our automated labeling framework. The
ground truth point types were based on a standardized naming tem-
plate specified by UCSD contracts and our prior experience work-
ing with HVAC systems and consultation with the campus building
managers.

Each point in BACnet has associated metadata that describes the
point and its properties. Some of these properties are specified by
the BACnet standard, and others are defined by the vendor. Table
1 shows examples of six points along with a subset of their meta-
data. It is common for large campuses and vendors to follow a
naming convention specific to the enterprise or campus [3, 4, 34].
For example, according to our university’s naming standard, “ven-



Vendor Given Name BACnet Name Description Data Type Unit Point Type
. Analog Cubic Feet per Supply Air
lS?;II;DG 1.N1STFLR.VAV-1NW.VAV-47. FLOW- NAE-66/N2-1.VAV-47.FLOW-SP Flow Setpoint Output Minute Flow Setpoint
BLDG2.RM-2819.SUP-FLOW NAE-14/N2 Trunk 2.VAV-35.SUP-FLOW  Supply Air Flow ~ Analog  Cubic Feetper  Supply Air
Input Minute Flow
Anal . .
BLDG3 IstFI RM-111.SUPFLOW NAE-10/N2-1.VMA101.SUPFLOW Process Variable na‘og Cubic Feetper  Supply Air
Input Minute Flow
Room 1705 Analog . Zone
BLDG2.RM-1704.RM1705-T NAE-14/N2 Trunk 2.VAV-36.RM1705-T Temperature Input Fahrenheit Temperature
Zone Temperature Analog . Zone
BLDG3 IstFI RM-135.ZN-T NAE-10/N2-2.VMA129.ZN-T e Input Fahrenheit Temperature
Zone Temperature Analog . Common
BLDG2.WBASEMENT.RM-B241.PHX-1.ZNT- NAE-65/N2-2.PHX-1.ZNT-SP Setpoint Output Fahrenheit Setpoint

SP

Table 1: Sample points from HVAC system across three buildings on the UCSD campus. Metadata of points which have the same
point type have inconsistencies, and points which are different point type can have similar metadata.

dor given name” uses a structured format to describe a point which
when split by ‘.’ gives the building name, the floor and room at
which the sensor is located, the type of equipment it belongs to and
the ID of the equipment, and finally, an abbreviation for the type
of point. The “description” of the point gives the point type, and
the “data type” gives both the type of data as well as whether it is
an input or output point. As can be observed in Table 1, this nam-
ing convention is not strictly followed or enforced. The ordering of
words or the punctuation may change, abbreviations and their de-
scription may change for the same point type, and as these names
are entered manually per equipment, there are typographical errors
and inconsistencies.

To standardize naming across buildings, we need to map the ex-
isting points into a standardized ontology [1]. We focus on accu-
rately mapping the building points to standardized point types in
this paper. Table 2 shows the number of point types for the four
buildings we use for this paper. Building 1, has 3213 points that
come from 154 distinct point types based on the ground truth la-
beling we do. Therefore, a perfect oracle algorithm that could label
similar point types from a single example would still require at least
154 examples (provided by a domain expert) to label all the points
in this building. Our goal is to design algorithms that can accu-
rately label all points and require as few manual labels as possible,
preferably close to unique point types in the building. Furthermore,
the algorithm should be able to learn the patterns in one building,
and use it for labeling points in other buildings - that is it should be
able to transfer knowledge and labels.

As there is a naming convention based on which points are la-
beled on our campus and in other enterprises, regex are a natural
fit for identification of sensor type [8]. As per the naming con-
vention, the “description” of the point gives its point type, and
the last part of the “vendor given name” is the abbreviation for
the point type. Thus, we could maintain a mapping of descrip-
tion and point type abbreviations to their respective ground truth
point types, and label points if their description is present in this
map. As new descriptions are discovered, the domain expert is
prompted to enter the point type. For Building 2, there are 922
unique descriptions mapping to 367 point types and 11910 total
points. There are multiple descriptions that map to a single point
type due to variations in the description, as the naming convention
is not strictly enforced. The variations in descriptions can occur due
to various reasons — spelling errors, additional information such as
room number, or an alternate description that has the same mean-
ing. For example, the point type “zone temperature” is also written
as “zone temp”’(shortening of word), “zone tempeartuer” (spell er-
ror), “room temperature” (alternate version), “zonel temperature”
or “zone temperature room 2102”(additional information). To re-

duce this variation, we remove special characters and numbers, and
use uniform case. The number of unique descriptions for Build-
ing 2 reduce to 527. Some of the points in the dataset do not have
any description, and we use point type abbreviation to label these
points. These abbreviations can sometimes reveal the point type
more accurately, as they do not necessarily vary due to changes in
description. “ZN-T” is an example abbreviation of the point type
“zone temperature”. However, these point types themselves vary,
with use of punctuation, numbers or alternate versions of the abbre-
viation for the same description. The total number of unique labels
with the combination of descriptions and sensor abbreviations for
blank descriptions for Building 2 is 589. Thus, by some preprocess-
ing the number of unique descriptions for 11910 points in Building
2 have been reduced from 922 to 589. It would take 589 manual in-
puts from experts to label Building 2, using regex to expand labeled
examples. Table 1 summarizes the variation observed in descrip-
tions and abbreviations observed across a few example point types.
We design our regex to be highly accurate, and it is possible to re-
duce the number of manual inputs for a decrease in manual inputs.
For example, regex for “zone temp” could include both descrip-
tions “zone temperature” and “zone temp” to reduce one manual
input, but may also include a false description “zone temperature
setpoint”. Thus, we rely on exact matches for these descriptions.
Figure 2 shows the number of points that could be labeled by regex
versus number of points manually labeled for Building 1.

Among possible errors in managing sensor data are sensor nam-
ing errors. Other errors occur when descriptions of certain point
types are used interchangeably across different equipment. For
Building 2, 58 points were mislabeled out of 11910 total points.
Note that some points are hard to label even manually because
of lack of metadata, and we mark these points as “unknown”. In
Building 2, 23 points were labeled as unknown.

We observe that using regex requires fairly involved domain ex-
pertise, in terms of the naming convention followed, yet can require
large amounts of data. Further, regex fail to exploit additional meta-
data information such as unit or data type, and the actual time series
of measurements, all of which can give additional clues to identify
the type of point. We next describe our approach to automatically
mapping each point to its sensor type using minimal manual label-
ing and no domain knowledge.

3. IDENTIFYING POINT TYPE

To reduce the number of manual labels required, we group or
cluster the features we have for each point. We use hierarchical
clustering to improve the grouping of points with similar meta-
data. Starting with a small number of labeled points, preferably
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Figure 3: Example dendrogram of hierarchical clustering.
Points whose metadata features are similar grouped together
first and clusters which are closer to each other are consecu-
tively grouped in the next stages.

belonging to different clusters, we train a model that automatically
labels other clusters, thus achieving point label expansion. When
the model determines that a (new) cluster is unrelated to any of the
ones already labeled, manual labeling is requested from a domain
expert for a member of this new cluster. We show that this pro-
cess drastically reduces the manual effort required to assign types
to points, with very few errors. Our machine learning algorithms
rely on implementations from Scikit Learn [40].

3.1 Hierarchically Clustering Points

As discussed in Section 2, regex can group points which are
of similar type thus reducing the manual effort in assigning point
types. However writing regex requires domain knowledge to map
point metadata to its type, and are dependent on the naming con-
vention, building, and equipment providers. Clustering using point
metadata offers two primary advantages over using regex for group-
ing. First, clustering uses the intrinsic similarities in sensor meta-
data rather than rely on a pre-specified pattern which may only be
able to capture similarity in terms of few pre-defined descriptors.
Thus, clustering can learn patterns using additional metadata such
as units and data type, and can group together points which have
minor variations in their metadata. As a result the grouping mech-
anism is more robust than an approach based on individual rules
created using regex, and can generalize to a variety of naming con-
ventions. The second advantage is that clustering based grouping
of points is not dependent on domain expertise to extract useful in-
formation from the metadata. We use hierarchical clustering [23]
to group points.

The features we use for hierarchical clustering are created based
on the “vendor given name”, description, unit, and the type. The
strings are tokenized into individual words and pre-processed to
remove special characters and numbers and to convert to uniform
case. A bag of words [45] representation is used for the feature
set. Hierarchical agglomerative clustering computes the distance
between a pair of points using their feature vectors, and merges
those points which have the least distance between them. These
clusters are then recursively merged again based on the linkage
metric used. We use complete linkage, which combines clusters
after examining each point within the cluster, and use manhattan
distance as the distance metric. The results obtained are similar for
other distance metrics such as euclidean distance and jaccard in-
dex. Manhattan distance is used for our results since it is easier to
interpret in terms of the difference between point features.

Figure 3 shows an example dendrogram obtained by hierarchi-
cal clustering of 20 points for illustration. Since the metadata used
for describing points of the same type are similar, the distance be-
tween their feature vectors is small, and they naturally get clustered
together in the first few stages. As the clusters get bigger, points of
different types also get merged eventually forming one big cluster.
An appropriate threshold distance on the Manhattan distance needs
to be identified that would prevent the merging of clusters with dif-
ferent point types.

Figure 4 shows the dendrogram obtained with hierarchical clus-
tering of 1000 points from one of the buildings in our testbed. The
horizontal lines represent choices for threshold for obtaining point
clusters. As we increase the threshold, the number of points in a
cluster increase, and points of different types may be clustered to-
gether. As we decrease the threshold the total number of clusters
increases. As the number of clusters reflect the number of manual
checks that may be required for labeling points, we would like to
obtain as few clusters as possible. These trade offs can be quanti-
fied using network motif methods [20], but for this work we pick a
threshold from the dendrogram based on an estimate of the number
of manually labeled points. We conservatively pick a low threshold
to minimize the number of errors in clustering, where errors corre-
spond to points of different types clustering together. As the feature
set we use is the same across buildings, this threshold remains the
same for hierarchical clustering of points in other buildings as well.

We conservatively define a cluster to be erroneous if it contains
points of more than one ground truth point type. So, a cluster and
all the points within it are marked incorrect even if only one out of
hundreds of points is included incorrectly. We applied hierarchical
clustering on 11,900 points in Building 2, and obtained 1105 clus-
ters. Only 18 of these clusters were erroneous, giving an accuracy
of 99.3% with only 85 points mislabeled. An error in clustering
occurs when the metadata used to describe points of different type
are very similar. As an observed example, two point types “hot
water pump status” and “chilled water pump status” were misclas-
sified because their descriptions were blank, and only two letters in
their entire metadata were different. It was observed that by exam-
ining the errors in clustering, it may be possible to identify errors
in metadata as well. For example, point types “zone temperature”
and “zone temperature setpoint” are input and output points respec-
tively, but both of them were labeled as inputs, causing an error in
clustering. As discussed earlier, the clustering was able to com-
bine points which would have been difficult to identify as similar
using regex rules. For example, points with descriptions “zone tem-
perature”, “cold box temperature” and “freezer temperature” were
clustered together as their other metadata are similar. Column (e)
of Table 2 summarizes the clustering results of four buildings.

From Table 2 we see that Building 2 has 367 unique point types



Building Total # Point # Unique # Accuracy Learning with Hierarchical # Merged Learning with Merged
Name  #Points Types Descriptions Clusters % # Manual Accuracy Clusters # Manual Accuracy
(@ ® | © | @ | @ | ® | ® (h) | i | ) (k)
Bldg 1 3213 154 251 300 98.7% 245 99.3% 191 181 98.3%
Bldg 2 11910 367 589 1105 99.3% 548 94.5% 499 453 96.0%
Bldg 3 1913 156 228 215 97.1% 204 99.8% 174 169 98.8%
Bldg 4 4380 192 316 329 98.8% 299 100% 206 198 99.1%

Table 2: Table lists the characteristics of four testbed buildings on our campus with a total of over 20,000 points. The # Point Types
(c) is obtained from the ground truth labels and represents number of examples required to learn point types by an oracle algorithm.
The unique descriptions (d) are obtained by manual pattern inference and represent the number of examples required to learn point
types by our regex algorithm. Results of hierarchical clustering (e), and random forest based active learning (g,h,j,k) is compared
with the number of manual examples required for both regex and oracle algorithm.
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Figure 4: Dendrogram for 1000 points in a building. The two dashed lines are the thresholds that can be chosen to increase or
decrease number of clusters obtained. As the threshold increases the number of clusters decreases and the accuracy of clustering

points of same type decreases.

(column ¢), 922 unique descriptions, 589 unique descriptions (col-
umn d) after their case is normalized, numbers are removed and
blank descriptions are mapped to abbreviations. Hierarchical clus-
tering gives 1105 clusters (column e), which is more than domain
based heuristics. However, the clusters obtained from hierarchi-
cal clustering capture the inherent variation in the naming struc-
ture, which is different from those obtained using domain knowl-
edge. This is because hierarchical clustering looks for similarities
across all the metadata of points while regex is based on domain
knowledge that specific metadata such as point description is more
indicative of the point type. As we show in Section 3.2, hierar-
chical clusters can be useful in learning data driven models. The
low intra-cluster error generated by the hierarchical clustering can
then be leveraged to efficiently label a cluster by manually assign-
ing type of one point in each cluster and propagating the same to
other points in the same cluster.

Furthermore, domain knowledge can be used to improve the clus-
tering further. We combine two clusters (obtained using hierar-
chical clustering) when the description of each point across these
clusters were identical. As a result of this, for Building 2, the num-
ber of unique clusters dropped to 499 (column i) compared to 589
unique descriptions. Thus, under the availability of the knowledge
of which parts of the point metadata are most important, the num-
ber of lookups required can be reduced when compared to using
regex. Figure 5 shows the comparison of the clusters obtained for
Building 1. We next show how manual input can be further reduced
by learning predictive models based on point metadata.

3.2 Learning Point Types

The regex based labeling of point types uses a look up table for
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Figure 5: Histogram of points for Building 1 by unique descrip-
tions, hierarchical clustering, merged clustering and ground
truth point types. The number of clusters have been cutoff at
50 out of a maximum of 300

different kinds of metadata, and maps it to its type. Hence, it re-
lies on exact matches on point types, and each variation of meta-
data needs to be manually verified before it is added to the table.
Although some of this variation in metadata is captured using hi-
erarchical clustering, it does not comprehensively capture all the
variations that occur. For example, suppose the point type “supply
air flow” has two points with descriptions “supply air flow” and
“supply flow feedback”. A look up table based match cannot auto-
matically learn that “supply air flow feedback” is also a description



of the same point type. Thus, there will be three separate lookups
for “supply air flow”, “supply flow feedback” and “supply air flow
feedback” using the regex method. If the metadata features used
by hierarchical clustering is different for these three points, they
would also be put into three separate clusters.

A data driven model can learn the relationship between meta-
data and ground truth point types, and it can give a prediction for
metadata whose examples have not been observed before. Hence,
a data driven model is capable of learning that “supply air flow”,
“supply flow feedback™ and “supply air flow feedback” belong to
the same point type. Further, sensor timeseries data can be used to
learn models (or rules, or regex) even when a pre-defined format
is unknown for using regex. They can also incorporate additional
features for learning the characteristics of a point. We present our
timeseries data based features used for learning a model in Sec-
tion 3.3

To validate our hypothesis that it is possible to learn an effective
model that can use sensor metadata to predict the point type, we mi-
cro benchmark the performance of a Random Forest classifier [29]
for Building 1. We use three fold cross-validation with the training
set having at least one example of each point type. We observe that
the Random Forest classifier can successfully identify point types
with an average accuracy of 97.1%.

A key challenge for training a model that can predict point types
based on their metadata is the availability of labeled training points.
In order to train a mapping model with minimal manual input, we
use active learning. To begin, we seed the learning with ten points
which have been labeled by a domain expert. When we inspect the
next point, we need to identify if this point is of the same types as
the ones we have already have a label for, and if not, ask the domain
expert if it is a new type.

There are two conflicting forces in learning such a model. There
are point types which have metadata, i.e., features, which are very
close to an existing point type, but it is of a different type. For ex-
ample, “occupied temperature setpoint” and “unoccupied tempera-
ture setpoint”. For a poorly trained model, these will be misclas-
sified. And then there are points whose features are very different,
but actually are of the same type. For example, “airflow rate” and
“supply flow feedback”. The model may mark one of these as a new
type, and hence, it increases the number of manual inputs required.

To check whether an unseen point is of a new type, we can assign
a probability of the point belonging to one of the existing classes
(i.e., point types). We can build a generative model for each of the
point types seen so far, and use this model to assign this probability.
We experimented with Gaussian Mixture model [36], Multinomial
Naive Bayes model [25] and one class SVM [31], and they did
not work well with our dataset. A discriminative model on the
other hand would give the probability of a point mapping to one of
the existing classes. If the model assigns low probability to all the
existing classes, then there is a good chance that this is of new point
type. In line with this intuition, the Random Forest classifier [29]
consistently gives low probability to a point of new type in our
dataset. Hence, we use the Random Forest classifier to determine
if we need to ask the domain expert for the correct label.

To label the points of a building, we first cluster the points using
hierarchical clustering, and assume the points within a cluster are
of the same type (Section 3.1). We ask for labels for 10 randomly
chosen points from distinct clusters from the domain expert, prop-
agate these labels to all the points in their respective clusters and
build a Random Forest classifier based on these points. Next, we
obtain the prediction probability for a new point. If its probability
is high (>0.9), we assume the prediction to be correct, and add the
points in the corresponding cluster to the training set. If the proba-
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Figure 6: Learning curve of random forest based active learn-
ing algorithm. It required manual labeling of 245 points for
labeling 3213 points in Building 1 with accuracy of 99.3%.

bility is low (<0.2), we ask the domain expert for the point type. We
iteratively retrain the model using the labels learned, and add more
points to the cluster. When there are no more points which sat-
isfy the upper/lower probability thresholds, we decrease/increase
the thresholds respectively, to learn more points.

Figure 6 shows the results for the random forest based active
learning for Building 1. The number of manual inputs required for
all points of Building 1 is 245, and the accuracy of labeling with the
obtained random forest classifier is 99.3%. Thus, our random forest
based active learner is able to learn the mapping of points in Build-
ing 1 with 6 fewer examples than regex methods (251 examples,
Figure 2) without any prior knowledge about the structure of the
naming convention. When we used the merged clusters obtained
by combining unique descriptions and hierarchical clusters (Sec-
tion 3.1), the number of manual examples required dropped to 181,
with an accuracy of 98.3%. Columns (g, h, j, k) of Table 2 summa-
rizes the results for active learning methods on four buildings. A
limitation of our algorithm is that learning rate with manual inputs
is linear as seen in Figure 6. However, a better algorithm could
be devised that takes advantage of frequently occurring point types
(Figure 10) to increase the learning rate.

3.2.1 Learning Across Multiple Buildings

With regex and look up tables, it is easy to use mapping from one
building to learn the mapping of another. Some point types such as
“zone temperature” and “supply air flow” are common across build-
ings, and once their mapping is learned, points of the same type in
other buildings can be labeled. To test how much information can
be learned across buildings using regex, we created a look up ta-
ble using ground truth point types of Building 2 and used it to label
points of Building 1. Figure 7 shows the learning curve obtained for
Building 1. All the points in the building were learned using 176
manual inputs, a reduction of 75 labels compared to regex based
learning without any prior knowledge. However, as the descrip-
tion of the two buildings do not follow the exact same terminology,
some errors are introduced, and the accuracy drops to 99.6%.

The active learning method used by Zodiac also learns the map-
ping between point metadata and its type, it should be able to la-
bel points of the same type even across different buildings as their
metadata will be similar. To evaluate the transfer learning ca-
pability of Zodiac, we first built a random forest classifier using
ground truth point types of Building 2, and used the iterative learn-
ing method to label points of Building 1. We again used 10 ran-
domly chosen points as seed examples, and the feature vector for
the classifier consists of bag of words of point metadata from both
buildings. Figure 8 shows the learning curve obtained for mapping
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Figure 7: Learning curve of regex based naming across multi-

ple buildings. It requires manual labels for 176 points in Build-

ing 1 (total 3213 points) with accuracy of 99.6%.
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Figure 8: Learning curve of random forest based active learn-

ing across multiple buildings. It required manual labels for 173

points in Building 1 (total 3213 points) with accuracy of 99.5%.

of Building 1 points. 173 manual inputs were used for learning,
an improvement of 51 manual labels compared to learning with-
out any prior experience. Thus, the active learning method is able
to successfully learn from prior experience without domain knowl-
edge, and is about as successful as the regex method. The accuracy
of classification was 99.5%, and hence, the learning model is able
to label points using information from another building. This is an
initial result based on one example, and we are in the process of
evaluating transfer learning across other buildings.

3.3 Using Time Series Data

To improve the accuracy of point labeling and to further reduce
the manual input, we next try and leverage the time series data from
points. This highlights an advantage of our learning based model,
as it can incorporate any additional information that is available.

In general, time series can be divided into episodes, where each
episode is a sample. For example, in many sensor applications,
such as building HVAC, there is a natural diurnal variation leading
to day length episodes. In order to leverage the time series data, the
problem we are faced with is one of time series classification [19].
This is a problem that has been well studied in the data mining lit-
erature, see for example [24, 30] for representative techniques and
applications. However, these methods often exclusively focus on
coarse patterns or motifs that can be used to distinguish time se-
ries generated from very different processes. In our case, due to
the fact that most points are associated with a common HVAC pro-
cess - with common diurnal variation and dependence on external
temperature - many time series will have similar patterns. Time se-
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Figure 9: Piece-wise constant approximation of time series

ries classification based on fine grained time series features arises
in applications like speaker recognition [7] and signature based ap-
pliance classification [22]. In our experiments we combine features
that capture many levels of the time series structure.

We use four classes of features, namely, scale based, pattern
based, texture based and shape based features. Scale based fea-
tures capture the range of values that the point readings can take.
We use mean, max, min, upper and lower quartiles and range. For
example, the mean and range of sensor measurements can tell us
if a sensor measures supply air temperature or supply water tem-
perature. Pattern based features capture the structure of repetitive
sub-patterns in the time series. We use three Haar wavelet and three
Fourier coefficients from the power spectral density of the signal as
features. Shape based features capture the coarse structure of the
time series, but are insensitive to fine structure. We use a piece-wise
constant model of the time series, as shown in Figure 9, and use the
location and magnitude of top two components as features. The
error variance between the piece-wise constant model and the true
signal is used as a texture feature. Texture based features capture
the roughness, smoothness and other fine scale features of the time
series. Texture based feature have a history in image processing
applications, but have found limited application in time series clas-
sification. However, we find that the texture based features we use
are particularly useful in distinguishing between points like supply
flow - which is rough - and their corresponding set-points which are
smooth. In addition to the error variance mentioned above, we use
the variance of the difference and second difference between con-
secutive samples, max variation, number of up and down changes
along with an edge entropy measure. The edge entropy measure is
intended to capture the regularity of the time series across multi-
ple episodes (a day in our case). For each episode, we capture the
times at which large changes in value occur, and accumulate these
as counts across episodes. We normalize these counts to sum to
one, and compute the entropy of the resulting probability distribu-
tion. If this entropy is high, we can infer that the point either has
limited structure within each episode or between episodes - a useful
feature for point data classification.

As described, we select six features of each type, for a net to-
tal of 24 data dependent time series features. While the selection
and design of more application specific features may be useful, we
find that these features perform well in practice. To test this, we
evaluate the time series data only, metadata only and time series
data+metadata features on a separate building with 5857 points di-
vided into 198 unique types. The distribution of point frequencies
is shown in Figure 10.

The accuracy of the three methods, as a function of the number
of labeled points of each type available is shown in Figure 11. We
observe that the time series or data based features are not very ef-
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Figure 11: Comparison of text (i.e., point metadata) and (time
series) data based learning methods. The x-axis represents the
number of labels required for each point type. We observe sig-
nificant improvement when both metadata and time series data
features are used together.

fective on their own. This is because of two reasons. There are
some point combinations ‘supply air flow setpoint’ and ‘cooling
minimum flow’ which are essentially identical as time series in the
way our buildings are configured. Secondly, there are many points
- such as some set points and heating commands that never change
(are always 0) hence are again impossible to differentiate using data
alone. Finally, there are some points like ‘Heating Command’ and
‘Cooling Command’ that are very similar at coarse and fine time
scales (taking values between 0 and 1, sharp changes at apparently
arbitrary points) that are essentially impossible to distinguish using
the features we use. We note that they can be distinguished us-
ing point inter-relationships (heating command will be high when
zone temperature is too low), and does suggest a direction of future
work. However, in Figure 11 we do see that using point data is able
to provide significant boost to accuracy over using point metadata
alone, particularly when only a few labeled examples are available
- exactly the regime that is of interest to us. This demonstrates
potential of using additional information such as point time series
data to improve the classification models.

We add the time series data features to the metadata features to
test if they help our active learning algorithm. Figure 12 shows
the learning curve of the active learning algorithm for Building 1
with 3213 points and 300 hierarchical clusters. The additional data
features lead to a slight drop in accuracy (98% vs 99.3%) and an
increase in manual examples required (261 vs 245). We observed

# points covered
N
o
o
o

0 50 100 150 200 250 300
Manual inputs

Figure 12: Learning curve of random forest based active learn-
ing algorithm with additional features extracted from time-
series data for Building 1 with use of hierarchical clusters. It
required manual labeling of 261 points for labeling 3213 points
in Building 1 with accuracy of 98 %.

similar results when we used merged clusters for Building 1. As
the random forest based active learning algorithm is based on confi-
dence of label classification, the result indicates that the added data
features led to ambiguity and decreased the confidence threshold.
Hence, additional manual inputs are solicited until lower thresholds
can be included. It is possible that a better active learning algorithm
can incorporate data features with improved accuracy. Moreover in
the absence of point metadata, the point time series data can be
leveraged to reduce manual labeling.

4. RELATED WORK

The organization of sensors using standardized ontologies has
been recognized in literature as a key component for building use-
ful, reusable applications [13, 38, 43]. OntoSensor [38] is a system
that labels sensors using an ontology and describes them using a
UML like language for representation and querying. Within the
buildings domain, mapping of sensors, or points, to standardized
ontologies is considered to be critical for information re-usability
and development of apps that improve energy efficiency [10, 21,
26, 37]. Standards are being developed for naming of points in
the HVAC system [1, 26], and system architectures have been pro-
posed that build upon a standardized information ontology to build
applications that understand contextual information [21]. However,
none of these works focus on mapping of existing points in a build-
ing to a standard ontology.

Schumann et al. [39] identify the mapping of existing points to
a standard format to be a challenge, and propose artificial intelli-
gence based methods such as hierarchical clustering for learning
such a mapping automatically. However, they do not implement or
evaluate their proposed method on real sensors. Reinisch et al. [37]
propose a platform that facilitates the mapping of points to a stan-
dard ontology. They do not, however, learn the mapping, and still
rely on manual inputs. Bhattacharya et al. [8] address the prob-
lem of organizing points to a standard template, and their work is
closest to our work. They use a synthesis technique that constructs
a metadata structure using transformation rules, and evaluate their
technique on point metadata from several building in their univer-
sity. We propose a different approach to the same problem, with
use of learning based methods. The advantage of using a mix-
ture of hierarchical clustering and active learning based methods
is that we can use known information about the points to learn their
model. For example, we used information such as unit, data type,
and characteristics of data variation as features in our model. In



contrast, the approach taken by Bhattacharya et al. [8] requires a
human to recognize and formulate the patterns to identify sensor
point types.

In machine learning terminology, the learning paradigm where

both labeled and unlabeled points are available is called semi-supervised

learning [11]. Active learning is a form of semi-supervised learn-
ing where the learning algorithm presents unlabeled points to an
expert who returns labels for them [12]. It is expected that effi-
cient querying algorithms will require fewer labeled samples. We
consider pool based active learning algorithms, which exploit situa-
tions where a small set of labeled data and a large pool of unlabeled
data are available [28]. Our active learning algorithms are uncer-
tainty based - that is we query points we are least confident about.
However, we modify these algorithms to be partly density based
[33], i.e., we select which points to query based on cluster sizes.
Based on the intuition that sensors in buildings and related large
scale applications are spatio-temporally organized, we incorporate
ideas from hierarchical active learning [15]. Finally, we note that
the use of random forest ensembles with uncertainty based sam-
pling is related to the idea of Query-by-Committee [42]. While
many variants of active and interactive learning have been proposed
in the literature [41], we find that the algorithms we have chosen
work well in practice for our application. Investigating other alter-
natives remains an interesting direction for future work.

S. LIMITATIONS AND FUTURE WORK

We have shown that it is possible to learn the naming patterns
in HVAC systems, and classify points according to their types with
minimal supervision. We have tried our methodology across four
buildings with promising results. Our dataset, however, is limited
to the UC San Diego’s university campus, and most of the equip-
ment is installed by one vendor. The point naming standards used
across many different institutions are similar to ours [3, 4, 34], but
it remains to be seen how our algorithm will generalize to a differ-
ent set of equipment, vendors and facilities management.

Standardized point names are are important step towards portable
smart building applications, however there is additional domain
specific context that is not captured by uniform naming. For ex-
ample, points need to be categorized according to the equipment
they belong to, and the type of equipment needs to be identified
for applications like fault detection and energy analysis. With our
text metadata from BACnet, we used equipment specific features to
identify equipment ID and equipment type. For buildings with well
labeled points, hierarchical clustering successfully grouped points
by equipment and clustered the equipment by their type. However,
many buildings had point metadata that lacked equipment infor-
mation or had poor equipment naming, and hierarchical clustering
failed for these buildings because the metadata features were not
adequate to cluster points by their equipment type. In future work,
we will pursue methods that would map the points to their respec-
tive equipment, identify the equipment and learn the relationship
between the points.

An example of such a problem is the mapping between VAV
boxes and AHUs in a building HVAC system. Many buildings in
our campus do not have this mapping information in the metadata,
and facilities managers resort to manually maintained documents,
or scrutinizing building architectural diagrams. In preliminary ex-
periments, we attempted to find this mapping using data driven
methods that identify the correlation between AHU behavior and
the corresponding VAVs served by that AHU. However, the varia-
tion in temperature or airflow data was inadequate to capture this
correlation. One promising approach is to use actuation of HVAC
system according to a controlled sequence to learn such relation-

ship between equipment across the building empirically.
Understanding such domain specific context and standardized
representation of this context is key to developing portable applica-
tions that provide useful insights based on sensor information and
provide value added services. To encourage research for devel-
opment of methods that automatically learn relationship between
points and map them to a standardized representation, we release
the dataset consisting of metadata of 180,000 points across 55 build-
ings in the URL: http://www.synergylabs.org/datasets/zodiac.html.
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7. CONCLUSION

Heterogeneity in sensor naming and metadata are an impediment
to development of reusable applications in large scale sensor de-
ployments. We illustrate the scale and challenges in mapping sen-
sors in HVAC systems in our university buildings to a standardized
naming schema. Regular expression based methods can map sen-
sors to their respective types but tend to be too sensitive to minor
variations in the sensor metadata and require substantial domain
expertise. Our proposed framework, Zodiac, uses hierarchical clus-
tering for grouping the sensors based on the inherent patterns in the
sensor metadata. We applied hierarchical clustering on four build-
ings in our campus, and the clusters were grouped together based
on sensor type with an average accuracy of 98% as compared to the
manually labelled ground truth. Zodiac uses the clusters to train a
random forest classifier using active learning. Our active learning
algorithm labeled sensors across four buildings to their respective
types with an average accuracy of 98% requiring 27% fewer ground
truth labels than regular expression based methods.
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