
Passionate on Parallel
2012 REU Program

This REU is co-funded by the
ASSURE program of the
Department of Defense in
partnership with the National
Science Foundation REU Site
program under Award No. 1004311.

Parallel Branch and Bound:
Applying an Asynchronous Multi-Pool Approach

to Cyclic Best First Search
Joshua Gluck, Nartezya Dykes

Swarthmore College, Spelman College, and The University of Illinois at Urbana-Champaign
I. Introduction

Branch and Bound (B&B) is a general
algorithm for finding optimal solutions to a
range of combinatorial optimization
problems, with applications from managing
employee shifts at hospitals to optimizing
profits for shipping corporations. B&B
generates results trees which must be
searched. Cyclic Best First Search (CBFS)
is a new search algorithm for optimal
processing of B&B trees [1] [2]. We
investigate the feasibility of implementing
CBFS in parallel, quantify the resulting
speedup and identify issues and future
directions.

II. Motivation
Our purpose was to examine the feasibility
and potential benefit of CBFS implemented
in parallel. We hoped to achieve reduced
runtimes while minimizing parallel
overhead. Our investigative starting point
was the application of parallel methods
from other predecessor algorithms [5] to
CBFS. From the possible methods, we
determined that an asynchronous multi-
pool approach showed the greatest
potential increase in throughput.

III. Materials
Our parallel Implementation of CBFS was
programmed using the POSIX Threads
library in C++. Tests were run on an Intel
Core i7 2.8 GHz Processor with four
hyperthreaded cores (supporting 8 parallel
threads) and 12 GB of RAM, running
CentOS 6.2. The Knapsack B&B test
problem was chosen for its extremely
common use [3][4] as well as its relative
ease of implementation. The individual
Knapsack sub problems were solved
using IBM ILOG CPLEX Optimization
Studio.

IV. Results
Our 8-way parallel implementation was tested on
Knapsack problem instances with 95 to 120
variables. The implementation generated a
significant reduction in wall time (Figure 2)
amounting to at least a factor of 10 speed up
for all problems. Given an 8-thread
implementation, our achieving greater than an 8x
speed gain may seem surprising; it is
accomplished via the reduction in insertion times
into priority queues enabled by the multi-pool
approach.

Figure 2 shows a significant reduction in wall
time; which suggests that CBFS is a good
candidate for parallelization. However, Figure 3
shows diminishing returns when problem size is
increased.

 To determine the root cause of this trend,
we examined the % of the total problems being
computed by the thread with the most work. The
results of this examination are shown in Figure 4.

As Figure 4 illustrates, the more overloaded thread
carries far more work that it should for optimal load
balance. Because this imbalance in work
grows steadily with the size of the problems, we
attribute the diminishing returns in Figure 3 to this
phenomenon.

V. Conclusions
Our results show the tremendous
benefits of applying parallelism to
CBFS. We achieved speedups of
10-11x, and with an increased
number of processors as well as
refined load balancing, our work
suggests even faster possible
implementations. B&B problems
which are currently time-infeasible
may become solvable.

Future work might delve into heuristic
best stopping times for threads to
communicate, as well as into
methods to use when shared
memory is not an option.

Further refinement of a load
balancing framework we have
implemented but not yet tested, as
well as testing scalability to orders of
magnitude larger problems are also
good areas for future research.

VII. Literature Cited
[1]. Zhang, W., and Korf, R. E. "Depth-First
vs. Best-First Search: New Results."
(1993): n. pag. Association for the
Advancement of Artificial Intelligence. 21
July 2012.
[2]. A BB&R algorithm for minimizing total
tardiness on a single machine with
sequence dependent setup times. Journal
of Global Optimization. Sewell, E.C.,
Sauppe, J.J., Morrison, D.R., Jacobson,
S.H., and Kao, G. To appear, 2012.
[3]. S. Martello, P. Toth, Knapsack
Problems: Algorithms and Computer
Implementation, John Wiley and Sons,
1990
 [4]. Horowitz, E.; Sahni, S. (1974),
"Computing partitions with applications to
the knapsack problem", Journal of the
Association for Computing Machinery 21:
277–292
[5]. Gendron, B., and Crainic, T. G.
"Parallel Branch and Bound Algorithm
Survey and Synthesis." Operations
Research 42 (1994): 1042-066. INFORMS.
25 June 2012.

VIII. Acknowledgements
Special Thanks to Dr. Sheldon Jacobson,
Dr. Craig Zilles, David Morrison, Jason
Sauppe, and Jill Peckham, as well as the
University of Illinois at Urbana-Champaign,
Swarthmore College Spelman College, and
the National Science Foundation for funding
our research.

Contact Us:
Joshua Gluck:
 jgluck2@swarthmore.edu
Nartezya Dykes:
 ndykes@scmail.spelman.edu
Dr. Sheldon Jacobson
 shj@illinois.edu

0
5

10
15
20
25
30

93 98 103 108 113 118W
a
ll

 T
im

e
 (

m
in

u
te

s
)

Problem Size (# of variables)

Figure 2: Serial vs. Parallel Wall Time
Serial

Parallel

Figure 3: Serial Wall Time / Parallel Wall Time

9.0
9.5

10.0
10.5
11.0
11.5
12.0

93 98 103 108 113 118
Problem Size (# of variables)

R
at

io

Serial / Parallel

9
67

5
64

4
70

12
65

15
64

8
68

56 65

11
67

40 30

14
65

50 65

20
65

62 60

64

17

65
19

64

16
68

64 65

18
67

3
72

7
70

10
69

13
70

2
76

6
74

1
78

Figure 1: First 20 Steps
of a CBFS In Progress
(Labeled in Order
of Examination)

Figure 4: Optimal Load Balance vs. Most Overloaded

12.4
12.6
12.8
13.0
13.2
13.4
13.6
13.8

93 98 103 108 113 118 123
Problem Size (# of variables)

%
 T

o
ta

l
W

o
rk

lo
ad

Optimal Load Balance
Overloaded thread's work

mailto:jgluck2@swarthmore.edu
mailto:ndykes@scmail.spelman.edu
mailto:shj@illinois.edu

	Slide Number 1

