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I. Introduction 

Branch and Bound (B&B) is a general 
algorithm for finding optimal solutions to a 
range of combinatorial optimization 
problems, with applications from managing 
employee shifts at hospitals to optimizing 
profits for shipping corporations.  B&B 
generates results trees which must be 
searched.  Cyclic Best First Search (CBFS) 
is a new search algorithm for optimal 
processing of B&B trees [1] [2]. We 
investigate the feasibility of implementing 
CBFS in parallel, quantify the resulting 
speedup and identify issues and future 
directions. 
 

II. Motivation 
Our purpose was to examine the feasibility 
and potential benefit of CBFS implemented 
in parallel. We hoped to achieve reduced 
runtimes while minimizing parallel 
overhead. Our investigative starting point 
was the application of parallel methods 
from other predecessor algorithms [5] to 
CBFS. From the possible methods, we 
determined that an asynchronous multi-
pool approach showed the greatest 
potential increase in throughput. 

III.  Materials  
Our parallel Implementation of CBFS was 
programmed using the POSIX Threads 
library in C++. Tests were run on an Intel 
Core i7 2.8 GHz Processor with four 
hyperthreaded cores (supporting 8 parallel 
threads) and 12 GB of RAM, running 
CentOS 6.2. The Knapsack B&B test 
problem was chosen for its extremely 
common use [3][4] as well as its relative 
ease of implementation. The individual 
Knapsack sub problems were solved 
using IBM ILOG CPLEX Optimization 
Studio.   

IV. Results 
Our 8-way parallel implementation was tested on 
Knapsack problem instances with 95 to 120 
variables. The implementation generated a 
significant reduction in wall time (Figure 2) 
amounting to at least a factor of 10 speed up 
for all problems.  Given an 8-thread 
implementation, our achieving greater than an 8x 
speed gain may seem surprising; it is 
accomplished via the reduction in insertion times 
into priority queues enabled by the multi-pool 
approach. 

Figure 2 shows a significant reduction in wall 
time; which suggests that CBFS is a good 
candidate for parallelization. However, Figure 3 
shows diminishing returns when problem size is 
increased.   

 To determine the root cause of this trend,   
we examined the % of the total problems being 
computed by the thread with the most work. The 
results of this examination are shown in Figure 4.  

As Figure 4 illustrates, the more overloaded thread  
carries far more work that it should for optimal load  
balance. Because this imbalance in work 
grows steadily with the size of the problems, we  
attribute the diminishing returns in Figure 3 to this  
phenomenon.   

V. Conclusions 
Our results show the tremendous 
benefits of applying parallelism to 
CBFS. We achieved speedups of  
10-11x, and with an increased 
number of processors as well as 
refined load balancing, our work 
suggests even faster possible 
implementations.  B&B problems 
which are currently time-infeasible 
may become solvable.     
 
Future work might delve into heuristic 
best stopping times for threads to 
communicate, as well as into 
methods to use when shared 
memory is not an option.  

Further refinement of a load 
balancing framework we have 
implemented but not yet tested, as  
well as testing scalability to orders of 
magnitude larger problems are also 
good areas for future research.  
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Figure 2: Serial vs. Parallel Wall Time
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Figure 3: Serial Wall Time / Parallel Wall Time
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Figure 1: First 20 Steps  
of a CBFS In Progress  
(Labeled in Order  
of Examination) 

Figure 4: Optimal Load Balance vs. Most Overloaded
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